#returns dataframe of locations relative to vignette folder
location_info<-function(){
locations <- data.frame(meta_loc=NA,
meta_files=NA,
counts_loc=NA,
counts_files=NA,
GMT_loc=NA,
GMT_files=NA)
#assign where meta, count, and GMT information is stored
#meta
locations$meta_loc <-'../data/DGE_data/'
locations$meta_files <- list(list.files(locations$meta_loc,pattern = "*meta*.csv")) #assign a list of data
#counts
locations$counts_loc <- '../data/DGE_data/'
locations$counts_files <- list(list.files(locations$counts_loc,pattern = "*counts*.csv"))
#GMT files
locations$GMT_loc<-'../data/TF_GSEA_GMT_FILES/'
locations$GMT_files <- list(list.files(locations$GMT_loc,pattern = "*.gmt"))
return(locations)
}
#prints possible list of drugs to select
possible_drugs<-function(){
TAS<-TAS_load()
print(sort(unique(TAS$name)))
}
#prints out possible list of drug targets
possible_targets<-function(){
TAS<-TAS_load()
print(sort(unique(TAS$symbol)))
}
#merge DGE1 & DGE2 counts & meta data
merge_DGE_data<-function(){
#load in data
setwd('../data/DGE_data')
dge1<-read_csv('DGE1_postqc-counts.csv')
dge2<-read_csv('DGE2_postqc-counts.csv')
meta1<-read_csv('DGE1_postqc-meta.csv')
meta2<-read_csv('DGE2_postqc-meta.csv')
#rename count them
tmp<-colnames(dge1)
for (i in 1:length(tmp)){
tmp[i] <- paste('DGE1_',tmp[i],sep="")
}
tmp[1]<-"HUGO"
colnames(dge1)<-tmp
#rename them
tmp<-colnames(dge2)
for (i in 1:length(tmp)){
tmp[i] <- paste('DGE2_',tmp[i],sep="")
}
tmp[1]<-"HUGO"
colnames(dge2)<-tmp
final<-inner_join(dge1,dge2,by='HUGO')
write.csv(final,file='DGE1_DGE2_counts.csv',quote = FALSE,row.names=FALSE)
#rename meta
tmp<-meta1$Well
for (i in 1:length(tmp)){
tmp[i] <- paste('DGE1_',tmp[i],sep="")
}
meta1$Well<-tmp
meta1$plate<-rep('DGE1',times = length(tmp))
#rename them
tmp<-meta2$Well
for (i in 1:length(tmp)){
tmp[i] <- paste('DGE2_',tmp[i],sep="")
}
meta2$Well<-tmp
meta2$plate<-rep('DGE2',times = length(tmp))
final<-bind_rows(meta1,meta2)
write.csv(final,file='DGE1_DGE2_meta.csv',quote = FALSE,row.names=FALSE)
}
counts_load<-function(file_name){
#' Load in a Counts .CSV File
#'
#' This function allows you to load in a CSV file and makes use of the global variable locations.
#' Using this variable, checks if the file exists
#' If it does exist, loads in csv with progress bar and returns a tibble
#' @param file_name File name to load in Defaults to TRUE.
#' @keywords load
#' @export counts tibble count matrix where columns should be sample names and first column
#' @examples
#' counts<-counts_load(count_file_name)
#make sure file exists
if(file.exists(paste(locations$counts_loc,file_name,'.csv',sep=""))){
print("Count Table Exists")
counts=read_csv(paste(locations$counts_loc,file_name,'.csv',sep=""),progress=show_progress())
return(counts)
} else{
print("Count File Does Not Exist")
print("Is it a CSV file?")
print("Put just the file name without '.csv'")
}
}
meta_load<-function(file_name){
#' Load in a Meta .CSV File
#'
#' This function allows you to load in a CSV file and makes use of the global variable locations.
#' Using this variable, checks if the file exists
#' If it does exist, loads in csv with progress bar and returns a tibble
#' @param file_name File name to load in Defaults to TRUE.
#' @keywords load
#' @export meta tibble count matrix where columns should be meta data for sample where at least one column should be sample information
#' @examples
#' meta<-meta_load(meta_file_name)
#'
#make sure file exists
if(file.exists(paste(locations$meta_loc,file_name,'.csv',sep=""))){
print("Meta Table Exists")
meta=read_csv(paste(locations$meta_loc,file_name,'.csv',sep=""),progress = show_progress())
return(meta)
} else{
print("Meta File Does Not Exist")
print("Is it a CSV file?")
print("Put just the file name without '.csv'")
}
}
TAS_load<-function(){
#' Load in a TAS .CSV File
#'
#' This function allows you to load in a CSV file and makes use of the global variable locations.
#' Using this variable, checks if the file exists
#' If it does exist, loads in csv with progress bar and returns a tibble
#' @param file_name File name to load in Defaults to TRUE.
#' @keywords load
#' @export TAS tibble count matrix where columns should be meta data for sample where at least one column should be sample information
#' @examples
#' meta<-meta_load(meta_file_name)
#'
#make sure file exists
if(file.exists(paste('../data/TAS_Profile/','drug_tas.csv',sep=""))){
print("TAS Table Exists")
TAS=read_csv(paste('../data/TAS_Profile/','drug_tas.csv',sep=""),progress=show_progress())
return(TAS)
} else{
print("TAS Table Does Not Exist")
}
}
##Synapse Login
synapse_login<-function(){
synapser::synLogin(email='nathan_johnson@hms.harvard.edu',
apiKey='07rRy7r0BjxoRPF6YNLFpJBj10LAekFHeCaPwpg2FYNOn4YbINW7RAVkjy7Bf8JqsxED/S5VaJYg14Wi/tDgmQ==')
}
## Define Synapse downloader(s)
syn_csv <- function( id ) {
syn <- synExtra::synDownloader("./data", ifcollision="overwrite.local")
syn(id) %>% read_csv(col_types=cols())}
#test all DGE conditions for DESeq2
DESeq2_run_all<-function(drug_target){
DESeq2_synrun(drug_target=drug_target,concentration=TRUE,toxicity=TRUE)
DESeq2_synrun(drug_target=drug_target,concentration=FALSE,toxicity=FALSE)
DESeq2_synrun(drug_target=drug_target,concentration=TRUE,toxicity=FALSE)
DESeq2_synrun(drug_target=drug_target,concentration=FALSE,toxicity=TRUE)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.