compare_numeric.data.frame: Compare numerical variables

Description Usage Arguments Details Value Attributes of return object See Also Examples

Description

The compare_numeric() compute information to examine the relationship between numerical variables.

Usage

1
2
3
4
compare_numeric(.data, ...)

## S3 method for class 'data.frame'
compare_numeric(.data, ...)

Arguments

.data

a data.frame or a tbl_df.

...

one or more unquoted expressions separated by commas. You can treat variable names like they are positions. Positive values select variables; negative values to drop variables. These arguments are automatically quoted and evaluated in a context where column names represent column positions. They support unquoting and splicing.

Details

It is important to understand the relationship between numerical variables in EDA. compare_numeric() compares relations by pair combination of all numerical variables. and return compare_numeric class that based list object.

Value

An object of the class as compare based list. The information to examine the relationship between numerical variables is as follows each components.

Attributes of return object

Attributes of compare_numeric class is as follows.

See Also

correlate, summary.compare_numeric, print.compare_numeric, plot.compare_numeric.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# Generate data for the example
heartfailure2 <- heartfailure[, c("platelets", "creatinine", "sodium")]

library(dplyr)
# Compare the all numerical variables
all_var <- compare_numeric(heartfailure2)

# Print compare_numeric class object
all_var

# Compare the correlation that case of joint the sodium variable
all_var %>% 
  "$"(correlation) %>% 
  filter(var1 == "sodium" | var2 == "sodium") %>% 
  arrange(desc(abs(coef_corr)))
  
# Compare the correlation that case of abs(coef_corr) > 0.1
all_var %>% 
  "$"(correlation) %>% 
  filter(abs(coef_corr) > 0.1)
  
# Compare the linear model that case of joint the sodium variable  
all_var %>% 
  "$"(linear) %>% 
  filter(var1 == "sodium" | var2 == "sodium") %>% 
  arrange(desc(r.squared))
  
# Compare the two numerical variables
two_var <- compare_numeric(heartfailure2, sodium, creatinine)

# Print compare_numeric class objects
two_var
  
# Summary the all case : Return a invisible copy of an object.
stat <- summary(all_var)

# Just correlation
summary(all_var, method = "correlation")

# Just correlation condition by r > 0.1
summary(all_var, method = "correlation", thres_corr = 0.1)

# linear model summaries condition by R^2 > 0.05
summary(all_var, thres_rs = 0.05)

# verbose is FALSE 
summary(all_var, verbose = FALSE)
  
# plot all pair of variables
plot(all_var)

# plot a pair of variables
plot(two_var)

# plot all pair of variables by prompt
plot(all_var, prompt = TRUE)

# plot a pair of variables not focuses on typographic elements
plot(two_var, typographic = FALSE)

bit2r/kodlookr documentation built on Dec. 19, 2021, 9:49 a.m.