Description Usage Arguments Details Value References Examples
Implements MR GENIUS under a multiplicative exposure model.
1 | genius_mulA(Y, A, G, alpha = 0.05, lower = -10, upper = 10)
|
Y |
A numeric vector of outcomes. |
A |
A numeric vector of exposures (binary values should be coded in 0/1). |
G |
A numeric matrix of instruments; each column stores values for one instrument (a numeric vector if only a single instrument is available). |
alpha |
Significance level for confidence interval (default value=0.05). |
lower |
The lower end point of the causal effect interval to be searched (default value=-10). |
upper |
The upper end point of the causal effect interval to be searched (default value=10). |
This function implements the estimator given in Lemma 3 of Tchetgen Tchetgen et al (2017), under a multiplicative exposure model. By default, the log ratio term in equation (9) is modelled as a linear combination of the main effects of all available instruments.
A "genius" object containing the following items:
beta.est |
The point estimate of the causal effect (on the additive scale) of the exposure on the outcome. |
beta.var |
The corresponding estimated variance. |
ci |
The corresponding Wald-type confidence interval at specified significance level. |
pval |
The p-value for two-sided Wald test of null causal effect (on the additive scale) of the exposure on the outcome. |
Tchetgen Tchetgen, E., Sun, B. and Walter, S. (2017). The GENIUS Approach to Robust Mendelian Randomization Inference. arXiv e-prints.
1 2 3 4 5 6 7 8 9 10 11 12 | #the following package is needed to simulate data
library("MASS")
nIV=10; N=2000; beta=0.5;
gamma=rep(0.5,nIV); alpha=rep(0.5,nIV);phi=rep(0.05,nIV);
Gn = mvrnorm(N,rep(0,nIV),diag(rep(1,nIV)))
G = (Gn>0)*1;
U = as.vector(phi%*%t(G))+rnorm(N);
#exposure generated from negative binomial distribution
A = rnbinom(N,size=10,mu = exp(as.vector(gamma%*%t(G)) +0.1*U))
Y = as.vector(alpha%*%t(G)) + beta*A + U + rnorm(N);
genius_mulA(Y,A,G);
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.