## ----setup, include=FALSE------------------------------------------------
knitr::opts_chunk$set(echo = TRUE)
## ----packages, echo = FALSE, message = FALSE, warning = FALSE------------
library(data.table)
library(survival)
library(ggplot2)
library(dplyr)
library(tslrt)
library(knitr)
library(kableExtra)
## ----parameter_setup_delay-----------------------------------------------
# number of patients in each arm
n_c <- 100
n_e <- 100
# median in control before switch
median_c_1 <- 10
# median in control after switch
median_c_2 <- 15
# median in experimental
median_e <- 15
# delay time where switching occurs
delay <- 3
# number of events to stop (event-driven study)
end_event <- 150
# recruitment period
rec_period <- 12
# recruitment parameter (assuming recruitment follows a powermodel)
rec_power <- 1
# different proportion of patients that switches
p <- c(0, 0.25, 0.5, 0.75, 1)
# significance level (one-sided)
alpha <- 0.025
# number of simulations
M <- 100
## ----MC_delay------------------------------------------------------------
res_delay <- MC_delay_crossover(n_c = n_c,
n_e = n_e,
median_c_1 = median_c_1,
median_c_2 = median_c_2,
median_e = median_e,
delay = delay,
end_event = end_event,
rec_period = rec_period,
rec_power = rec_power,
p = p,
alpha = alpha,
M = M)
## ----MC_delay_table------------------------------------------------------
res_delay$result
## ----MC_delay_graph, fig.width = 7, fig.height = 5-----------------------
res_delay$plot
## ----MC_delay_graph_eff, fig.width = 7, fig.height = 5-------------------
res_delay$plot.eff
## ----parameter_setup_prog------------------------------------------------
# number of patients in each arm
n_c <- 100
n_e <- 100
# median in control before switch
median_c <- 10
# median in experimental
median_e <- 15
# median for progressions
median_prog <- 3
# number of events to stop (event-driven study)
end_event <- 150
# recruitment period
rec_period <- 12
# recruitment parameter (assuming recruitment follows a powermodel)
rec_power <- 1
# different proportion of patients that switches
p <- c(0, 0.25, 0.5, 0.75, 1)
# significance level (one-sided)
alpha <- 0.025
# number of simulations
M <- 100
## ----MC_prog-------------------------------------------------------------
res_prog <- MC_exp_prog_crossover(n_c = n_c,
n_e = n_e,
median_c = median_c,
median_e = median_e,
median_prog = median_prog,
end_event = end_event,
rec_period = rec_period,
rec_power = rec_power,
p = p,
alpha = alpha,
M = M)
## ----MC_prog_table-------------------------------------------------------
res_prog$result
## ----MC_prog_graph, fig.width = 7, fig.height = 5------------------------
res_prog$plot
## ----MC_prog_graph_eff, fig.width = 7, fig.height = 5--------------------
res_prog$plot.eff
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.