Description Usage Arguments Value Examples
View source: R/benchmark_sdm.r
A function to benchmark a collection of regular machine learning models.
1 2  | benchmark_sdm(benchmarking_data, learners, dataset_type = "default",
  sample = FALSE)
 | 
benchmarking_data | 
 A dataframe from the output of   | 
learners | 
 A list of mlr learner objects which specify which models to use (i.e. Random Forests). The following learners are supported: "classif.logreg", "classif.gbm", "classif.multinom", "classif.naiveBayes", "classif.xgboost", "classif.ksvm".  | 
dataset_type | 
 A character string indicating spatial partitioning method. This is used in order to avoid spatial autocorrelation issues.  | 
sample | 
 Logical. Indicates whether benchmarking should be done on an undersampled dataset. This is useful for testing model efficiency with an imbalanced dataset (i.e. few observations and many background (pseudo-absence) points).  | 
Benchmarking object (class bmr). This object can be accessed by other functions in order to obtain the benchmark results.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28  | ## Not run: 
# download benchmarking data
benchmarking_data <- get_benchmarking_data("Lynx lynx",
                                           limit = 1500)
# create a list of algorithms to compare
# here it is important to specify predict.type as "prob"
learners <- list(mlr::makeLearner("classif.randomForest",
                                  predict.type = "prob"),
                 mlr::makeLearner("classif.logreg",
                                 predict.type = "prob"))
# run the model benchmarking process
# if you have previously used a partitioning method you should specify it here
bmr <- benchmark_sdm(benchmarking_data$df_data,
                    learners = learners,
                    dataset_type = "default")
# for benchmarking an imbalanced dataset you can undersample
bmr <- benchmark_sdm(benchmarking_data$df_data,
                    learners = learners,
                    dataset_type = "default",
                    sample = TRUE)
# inspect the benchmark results
bmr
## End(Not run)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.