Description Usage Arguments Value Examples
Generate the proximal operator for the requested penalty
| 1 2 3 | initializeOperator(lambda1, index.penalty1, index.model1, lambda2,
  index.penalty2, index.model2, lambdaG, index.penaltyG, index.modelG, lambdaN,
  index.penaltyN, nrow, ncol, equivariance, constrain.variance, index.variance)
 | 
| lambda1 | lasso penalization parameter. | 
| index.penalty1 | a list containing the position of lasso penalized parameters in the vector of parameters. | 
| index.model1 | the index of the model relative to each lasso penalized parameter | 
| lambda2 | ridge penalization parameter. | 
| index.penalty2 | a list containing the position of ridge penalized parameters in the vector of parameters. | 
| index.model2 | the index of the model relative to each ridge penalized parameter | 
| lambdaG | group lasso penalization parameter. | 
| index.penaltyG | a list containing the position of group lasso parameters in the vector of parameters. | 
| index.modelG | the index of the model relative to each group lasso penalized parameter | 
| lambdaN | nuclear norm penalization parameter. | 
| index.penaltyN | a list containing the position of the parameters corresponding to each image in the vector of parameters. | 
| nrow | a vector containing the number of rows of each image. | 
| ncol | a vector containing the number of columnss of each image. | 
| equivariance | should the lambda parameter be multiplied with the first variance parameter? | 
| constrain.variance | should the variance parameters be exponential trans | 
| index.variance | the position of the variance parameters in coef | 
a list containing the proximal operator and the penalty funtion
| 1 | lavaPenalty:::initializeOperator(lasso = TRUE, ridge = FALSE, groupLasso = FALSE, nuclearNorm = FALSE)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.