Description Usage Arguments Details Examples
Compute the p.value associated with the estimated statistic using a bootstrap sample of its distribution under H1.
1 2 | boot2pvalue(x, null, estimate = NULL, alternative = "two.sided",
FUN.ci = quantileCI, tol = .Machine$double.eps^0.5)
|
x |
[numeric vector] a vector of bootstrap estimates of the statistic. |
null |
[numeric] value of the statistic under the null hypothesis. |
estimate |
[numeric] the estimated statistic. |
alternative |
[character] a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". |
FUN.ci |
[function] the function used to compute the confidence interval.
Must take |
tol |
[numeric] the absolute convergence tolerance. |
For test statistic close to 0, this function returns 1.
For positive test statistic, this function search the quantile alpha such that:
quantile(x, probs = alpha)=0 when the argument alternative is set to "greater".
quantile(x, probs = 0.5*alpha)=0 when the argument alternative is set to "two.sided".
If the argument alternative is set to "less", it returns 1.
For negative test statistic, this function search the quantile alpha such that:
quantile(x, probs = 1-alpha=0 when the argument alternative is set to "less".
quantile(x, probs = 1-0.5*alpha=0 when the argument alternative is set to "two.sided".
If the argument alternative is set to "greater", it returns 1.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | set.seed(10)
#### no effect ####
x <- rnorm(1e3)
boot2pvalue(x, null = 0, estimate = mean(x), alternative = "two.sided")
## expected value of 1
boot2pvalue(x, null = 0, estimate = mean(x), alternative = "greater")
## expected value of 0.5
boot2pvalue(x, null = 0, estimate = mean(x), alternative = "less")
## expected value of 0.5
#### positive effect ####
x <- rnorm(1e3, mean = 1)
boot2pvalue(x, null = 0, estimate = 1, alternative = "two.sided")
## expected value of 0.32 = 2*pnorm(q = 0, mean = -1) = 2*mean(x<=0)
boot2pvalue(x, null = 0, estimate = 1, alternative = "greater")
## expected value of 0.16 = pnorm(q = 0, mean = 1) = mean(x<=0)
boot2pvalue(x, null = 0, estimate = 1, alternative = "less")
## expected value of 0.84 = 1-pnorm(q = 0, mean = 1) = mean(x>=0)
#### negative effect ####
x <- rnorm(1e3, mean = -1)
boot2pvalue(x, null = 0, estimate = -1, alternative = "two.sided")
## expected value of 0.32 = 2*(1-pnorm(q = 0, mean = -1)) = 2*mean(x>=0)
boot2pvalue(x, null = 0, estimate = -1, alternative = "greater")
## expected value of 0.84 = pnorm(q = 0, mean = -1) = mean(x<=0)
boot2pvalue(x, null = 0, estimate = -1, alternative = "less") # pnorm(q = 0, mean = -1)
## expected value of 0.16 = 1-pnorm(q = 0, mean = -1) = mean(x>=0)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.