sandbox/FFEV/HermiteGrid_CaseStudy.R

# This script estimates the prior of a hedge fund return and processes extreme views on CVaR 
# according to Entropy Pooling
# This script complements the article
#  "Fully Flexible Extreme Views"
#	by A. Meucci, D. Ardia, S. Keel
#	available at www.ssrn.com
# The most recent version of this code is available at
# MATLAB Central - File Exchange

# IMPORTANT - This script is about the methodology, not the input data, which has been modified

xi = as.matrix( 100 * data[, 2] )
n = nrow(xi)

# bandwidth
bw = kernelbw(xi)

# weights
lambda = log(2) / (n / 2)
wi = as.matrix( exp( -lambda * ( n - seq( from=n, to=1 ) ) ) )
wi = as.matrix( apply( wi, 2, rev ) / sum( wi ) )
                
# Prior market model
# kernel density

market.mu  = mean(xi)
market.pdf = function ( x ) kernelpdf( x, xi, bw, wi )
market.cdf = function ( x ) kernelcdf( x, xi, bw, wi )
market.inv = function ( x ) kernelinv( x, xi, bw, wi )
market.VaR95 = market.inv( c(0.05) )
market.CVaR95 = integrate( function( x ) x * market.pdf( x ), -100, market.VaR95 )$val / 0.05

# numerical (Gauss-Hermite grid) prior 
tmp = ( ghqx - min( ghqx ) )/( max( ghqx ) - min( ghqx ) ) # rescale GH zeros so they belong to [0,1]
epsilon = 1e-10
Lower = market.inv( epsilon )
Upper = market.inv( 1 - epsilon )
X  = Lower + tmp * ( Upper - Lower ) # rescale mesh
                
p = integrateSubIntervals( X , market.cdf )
p = normalizeProb( p )
J = nrow( X )
                
# Entropy posterior from extreme view on mean and CVaR
view.mu   = mean( xi ) - 1.0
view.CVaR95 = market.CVaR95 - 1.0
                
# Netwton Raphson
emptyMatrix = matrix( ,nrow = 0, ncol = 0)
s = emptyMatrix
idx = as.matrix( cumsum(p) <= 0.05 )
s[1] = sum(idx)
posteriorEntropy = EntropyProg(p, t( idx ), as.matrix( 0.05 ), rbind( rep(1, J), t( X ), t( idx * X ) ), rbind( 1, view.mu, 0.05 * view.CVaR95) )
KLdiv = as.matrix( posteriorEntropy$optimizationPerformance$ml )
p_ = posteriorEntropy$p_

doStop = 0
i = 1
while ( !doStop ) {
  i = i + 1

  idx = cbind( matrix(1, 1, s[i - 1] ), matrix(0, 1, J - s[i-1] ) )
  posteriorEntropy1 = EntropyProg(p, idx, as.matrix( 0.05 ), rbind( matrix(1, 1, J), t( X ), t( t(idx) * X) ), rbind( 1, view.mu, 0.05 * view.CVaR95 ) )
  # [dummy, KLdiv_s]  = optimizeEntropy(p, [idx'; (idx .* X)'], [0.05; 0.05 * view.CVaR95], [ones(1, J); X'], [1; view.mu]);
   
  idx = cbind( matrix(1, 1, s[i - 1] + 1 ), matrix(0, 1, J - s[i - 1] - 1) )
  posteriorEntropy2 = EntropyProg(p, idx, as.matrix( 0.05 ), rbind( matrix(1, 1, J), t( X ), t( t(idx) * X) ), rbind( 1, view.mu, 0.05 * view.CVaR95 ) )
  # [dummy, KLdiv_s1] = optimizeEntropy(p, [idx'; (idx .* X)'], [0.05; 0.05 * view.CVaR95], [ones(1, J); X'], [1; view.mu]);
   
  idx = cbind( matrix(1, 1, s[i - 1] + 2 ), matrix(0, 1, J - s[i - 1] - 2) )
  posteriorEntropy3 = EntropyProg(p, idx, as.matrix( 0.05 ), rbind( matrix(1, 1, J), t( X ), t( t(idx) * X) ), rbind( 1, view.mu, 0.05 * view.CVaR95 ) )
  # [dummy, KLdiv_s2] = optimizeEntropy(p, [idx'; (idx .* X)'], [0.05; 0.05 * view.CVaR95], [ones(1, J); X'], [1; view.mu]);

  # first difference
  DE  = posteriorEntropy2$optimizationPerformance$ml - posteriorEntropy1$optimizationPerformance$ml
  
  # second difference
  D2E = posteriorEntropy3$optimizationPerformance$ml - 2 * posteriorEntropy2$optimizationPerformance$ml + posteriorEntropy1$optimizationPerformance$ml
  
  # optimal s
  s = rbind( s, round( s[i - 1] - (DE / D2E) ) ) 
                                                                                             
  tmp = emptyMatrix
  idx  = cbind( matrix( 1, 1, s[i] ), matrix( 0, 1, J - s[i] ) )
  tempEntropy = EntropyProg(p, idx, as.matrix( 0.05 ), rbind( matrix(1, 1, J), t( X ), t( t(idx) * X) ), rbind( 1, view.mu, 0.05 * view.CVaR95 ) )
  # [tmp.p_, tmp.KLdiv] = optimizeEntropy(p, [idx'; (idx .* X)'], [0.05; 0.05 * view.CVaR95], [ones(1, J); X'], [1; view.mu]);
  p_ = cbind( p_, tempEntropy$p_ )
  KLdiv = rbind( KLdiv, tempEntropy$optimizationPerformance$ml ) #ok<*AGROW>

  # if change in KLdiv less than one percent, stop
  if( abs( ( KLdiv[i] - KLdiv[i - 1] ) / KLdiv[i - 1] )  < 0.01 ) { doStop = 1 }
}                

plot( t(X), p )
plot( t(X), p_[,ncol(p_)])
braverock/PortfolioAnalytics documentation built on April 18, 2024, 4:09 a.m.