## ----include=FALSE-------------------------------------------------------
set.seed(27)
library(devtools)
#install_github("brbatv/lab7",force=TRUE)
library(lab7ab)
library(MASS)
library(mlbench)
library(caret)
library(leaps)
data("BostonHousing")
## ------------------------------------------------------------------------
set.seed(27)
training_data <- createDataPartition(BostonHousing$crim,p = 0.55)
training <- BostonHousing[training_data$Resample1, ]
test <- BostonHousing[-training_data$Resample1, ]
## ----results:hide--------------------------------------------------------
set.seed(27)
full_model <- lm(crim~.,data=training)
## ----include=FALSE-------------------------------------------------------
set.seed(27)
step <- stepAIC(full_model, direction="backward")
## ----eval=FALSE,warning=FALSE--------------------------------------------
#
# step <- stepAIC(full_model, direction="backward")
## ----warning=FALSE-------------------------------------------------------
step$anova # display results
## ----warning=FALSE-------------------------------------------------------
lm1 <- caret::train(crim ~ ., data=training, method = 'leapForward')
lm1
summary(lm1)
## ------------------------------------------------------------------------
set.seed(27)
ridgeex <- list(type="Regression",
library="lab7ab",
loop=NULL,
prob=NULL,
parameters=data.frame(parameter="lambda",class="numeric",label="lambda"),
grid=function(y,x, len=NULL, search="grid")
{
data.frame(lambda = seq(0,200,by=5))
},
fit=function (x, y, wts, param, lev, last, classProbs, ...)
{
dat <- if (is.data.frame(x))
x
else as.data.frame(x)
dat$.outcome <- y
out <- ridgereg$new(formula=.outcome ~ ., data = dat, lambda=param$lambda, ...)
out
},
predict = function (modelFit, newdata, submodels = NULL,preProc=NULL)
{
if (!is.data.frame(newdata))
newdata <- as.data.frame(newdata)
modelFit$predict(newdata)
})
testo<-caret::train(crim ~ ., data=training, method = ridgeex)
testo
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.