#' Analyze Mini Ensemble Data - Finds Event Duration, Force, and Time Offs
#'
#' @param data
#'
#' @return
#' @export
#'
#' @examples
plot_analyze_mini_ensemble <- function(data){
raw_data <- tibble(trap = data,
index = 1:length(trap))
#calculate running mean
run_mean <- running(raw_data$trap, fun = mean, width = 50, by = 1)
run_mean0 <- ifelse(run_mean < 0, 0, run_mean)
#Determine if run_mean is in an event or baseline noise by using >10 as event
on_off <- ifelse(run_mean > 8, 2, 1)
rle_object<- as_tibble(do.call("cbind", rle(on_off)))
#find initial event start/stop
#If the rle_object's last row is in state 1, get rid of that last row. This needs to end in state 2 to capture the end of the last event
mini_rle_object <- if(tail(rle_object, 1)$values == 1){
slice(rle_object, -length(rle_object$values))
} else {
rle_object
}
split_data <- mini_rle_object %>%
dplyr::mutate(cumsum = cumsum(lengths)) %>%
dplyr::group_by(values) %>%
split(mini_rle_object$values)
#data is recombined in a state_1 column and a state_2
#the values in these columns represent the last data point in either state 1 or state 2
#So the range of values between the end of state 1 (or start of state 2) and the end of state 2 is the event duration
regroup_data <- bind_cols(state_1_end = split_data[[1]]$cumsum, state_2_end = split_data[[2]]$cumsum) %>%
mutate(event_duration_dp = state_2_end - state_1_end)
#filter out state 2s that are less than 10 ms (50 data points)
events <- regroup_data %>%
filter(event_duration_dp > 50)
scale_by_event_index <- data.frame(state_1_start = c(0, events$state_2_end[-length(events$state_2_end)] + 1),
state_2_end = events$state_2_end)
prior_noise_plus_event <- vector("list")
for(i in 1:nrow(scale_by_event_index)){
prior_noise_plus_event[[i]] <- raw_data$trap[scale_by_event_index$state_1_start[i]:scale_by_event_index$state_2_end[i]]
}
state_1_index <- data.frame(state_1_start = scale_by_event_index$state_1_start,
state_1_end = events$state_1_end)
state_1_means <- vector("list")
for(i in 1:nrow(state_1_index)){
state_1_means[[i]] <- mean(raw_data$trap[state_1_index$state_1_start[i]:state_1_index$state_1_end[i]])
}
rescaled_vectors <- vector("list")
for(i in 1:length(prior_noise_plus_event)){
rescaled_vectors[[i]] <- prior_noise_plus_event[[i]] - state_1_means[[i]]
}
##### FIND BETTER START OF EVENT########
end_of_last_event <- max(length(events$state_2_end))
last_s1_start <- events$state_2_end[end_of_last_event]+ 1
end_raw <- length(raw_data$trap)
rescaled_raw_data <- tibble(trap = c(unlist(rescaled_vectors), raw_data$trap[last_s1_start : end_raw]),
index = seq(1, length(trap)))
run_mean_rescaled <- running(rescaled_raw_data$trap, fun = mean, width = 50, by = 1)
rescaled_events <- identify_mini_events(raw_data, run_mean_rescaled)
##### FIND OFF TIMES #######
minus1 <- rescaled_events$state_1_end[-1]
minus2 <- rescaled_events$state_2_end[-length(rescaled_events$state_2_end)]
off_time_index <- bind_cols(state_1_start = minus2 + 1, state_1_end = minus1) %>%
mutate(off_time_dp = (state_1_end - state_1_start) +1,
off_time_sec = off_time_dp/5000,
off_time_ms = off_time_sec*1000)
###### FORCES #####
forces <- vector()
for(i in 1:nrow(rescaled_events)){
temp_vector <- rescaled_raw_data$trap[(rescaled_events$state_1_end[i] + 1) : (rescaled_events$state_2_end[i])]
forces[i] <- max(running(temp_vector, fun = mean, width = 10, by = 1))
}
converted_force = forces*0.04
##### COMBINE ALL EVENT DATA ####
rescaled_events$force <- converted_force
final_events <- rescaled_events %>%
mutate(off_time_prior_dp = c(NA, off_time_index$off_time_dp),
off_time_prior_sec = off_time_prior_dp/5000,
off_time_prior_ms = off_time_prior_sec*1000,
raw_event_duration_dp = state_2_end - state_1_end,
raw_event_duration_sec = raw_event_duration_dp/5000,
raw_event_duration_ms = raw_event_duration_sec * 1000,
peak_nm = forces) %>%
dplyr::select(state_1_end, state_2_end, raw_event_duration_ms, off_time_prior_ms, force, everything()) %>%
rename(end_s1 = state_1_end,
end_s2 = state_2_end)
#plot
filter_final_events1 <- filter(final_events, end_s2 < 20000)
filter_final_events2 <- filter(final_events, end_s2 > 20000 & end_s2 < 40000)
filter_final_events3 <- filter(final_events, end_s2 > max(final_events$end_s2) - 20000)
run_mean_rescaled0 <- ifelse(run_mean_rescaled < 0 , 0, run_mean_rescaled)
#1
p1 <- ggplot()+
geom_line(aes(x = 1:20000, y = rescaled_raw_data$trap[1: 20000 ]))+
geom_line(aes(x = 1: 20000, y = run_mean_rescaled0[1:20000]),color = "lightskyblue")+
geom_line(aes(x = 1:20000, y = rep(8, 20000)), color = "gray50")+
geom_point(aes(x = filter_final_events1$end_s2, y = filter_final_events1$peak_nm), color = "gold")+
geom_point(aes(x = filter_final_events1$end_s1, y = run_mean_rescaled0[filter_final_events1$end_s1]), color = "green", shape = 17, size = 2)+
geom_point(aes(x = filter_final_events1$end_s2, y = run_mean_rescaled0[filter_final_events1$end_s2]), color = "red", shape = 4)+
theme_bw()+
ylab("Discplacement (nm)")+
xlab("Time (data points)")
#2
p2 <- ggplot()+
geom_line(aes(x = 20001:40000, y = rescaled_raw_data$trap[20001: 40000 ]))+
geom_line(aes(x = 20001: 40000, y = run_mean_rescaled0[20001:40000]),color = "lightskyblue")+
geom_line(aes(x = 20001:40000, y = rep(8, 20000)), color = "gray50")+
geom_point(aes(x = filter_final_events2$end_s2, y = filter_final_events2$peak_nm), color = "gold")+
geom_point(aes(x = filter_final_events2$end_s1, y = run_mean_rescaled0[filter_final_events2$end_s1]), color = "green", shape = 17, size = 2)+
geom_point(aes(x = filter_final_events2$end_s2, y = run_mean_rescaled0[filter_final_events2$end_s2]), color = "red", shape = 4)+
theme_bw()+
ylab("Discplacement (nm)")+
xlab("Time (data points)")
#3
p3 <- ggplot()+
geom_line(aes(x = (max(final_events$end_s2) - 20000):max(final_events$end_s2), y = rescaled_raw_data$trap[(max(final_events$end_s2) - 20000):max(final_events$end_s2)]))+
geom_line(aes(x = (max(final_events$end_s2) - 20000):max(final_events$end_s2), y = run_mean_rescaled0[(max(final_events$end_s2) - 20000):max(final_events$end_s2)]),color = "lightskyblue")+
geom_line(aes(x = (max(final_events$end_s2) - 20000):max(final_events$end_s2), y = rep(8, 20001)), color = "grey50")+
geom_point(aes(x = filter_final_events3$end_s2, y = filter_final_events3$peak_nm), color = "gold")+
geom_point(aes(x = filter_final_events3$end_s1, y = run_mean_rescaled0[filter_final_events3$end_s1]), color = "green", shape = 17, size = 2)+
geom_point(aes(x = filter_final_events3$end_s2, y = run_mean_rescaled0[filter_final_events3$end_s2]), color = "red", shape = 4)+
theme_bw()+
ylab("Discplacement (nm)")+
xlab("Time (data points)")
plots <- arrangeGrob(p1, p2, p3, ncol = 1)
return(plots)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.