validate <- function(train_file, validate_file, outdir, prefix, feature_count, sep) {
dir.create(outdir, recursive = TRUE)
t_data <- loadData(inpath = train_file, no_probe_anno = TRUE, sepstr = sep)
validate_data <- loadValidateData(inpath = validate_file, sep = sep)
# get the appropriate number of features
features <- getFeatures(validate_data, feature_count)
print("features")
print("....")
print(features)
print("....")
# do_train
trainC <- getTrainC_with_all(t_data)
trainData <- t_data$cdata
trainExp <- getExpData(trainData, features, trainC)
print("....")
print("trainC")
print(trainC)
print("....")
modT <- do_train(trainExp, trainC)
print("modT")
print("....")
print(modT)
print("....")
# The save the model to the outfile
model_file <- paste0(outdir, "/", prefix, "_model.rds")
saveRDS(modT, model_file)
testExp <- get_exp_for_validate(validate_data, features)
prediction <- do_predict(testExp, modT)
print("prediction")
print("....")
print(prediction)
print("....")
pred_file <- paste0(outdir, "/", prefix, "_pred_table.txt")
sink(pred_file)
print(prediction)
sink()
print("end of prediction")
}
validate_BS <- function(train_file, validate_file, outdir, prefix, feature_count, sep) {
dir.create(outdir, recursive = TRUE)
t_data <- loadData(inpath = train_file, no_probe_anno = TRUE, sepstr = sep)
validate_data <- loadValidateData(inpath = validate_file, sep = sep)
# get the appropriate number of features
features <- getFeatures(validate_data, feature_count)
print("features")
print("....")
print(features)
print("....")
# do_train
print(".....")
print("t_data")
print("....")
print(t_data)
print("....")
trainC <- getTrainC_with_all(t_data)
trainData <- t_data$cdata
trainExp <- getExpData(trainData, features, trainC)
testExp <- get_exp_for_validate(validate_data, features)
print("trainExp")
print("....")
print(trainExp)
print("....")
print("....")
print("trainC")
print(trainC)
print("....")
print("Starting bootstrap")
exe_bootstrap(trainExp, trainC, testExp, outdir, prefix)
}
get_exp_for_validate <- function(vdata, features) {
lExp1 <- vdata[features, ]
lExp <- t(lExp1)
return (lExp)
}
getFeatures <- function(cdata, feature_count) {
features1 <- rownames(cdata)
flen1 <- length(features1)
flen <- NA
if (feature_count == -1) {
# default
flen <- flen1
} else if (feature_count == 0) {
flen <- flen1
print("WARN: featuren_count is 0.")
} else if (feature_count > flen1) {
flen <- flen1
print(paste0("WARN: feature_count is: ", feature_count))
} else {
flen <- feature_count
}
features <- features1[1:flen]
return (features)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.