## code to prepare `terms_mix_bayer_brasil` dataset goes here
devtools::load_all()
# nflists_bayer_brasil %>% glimpse()
# tipo_documento_bayer_brasil %>% glimpse()
# campanhas_bayer_brasil %>% glimpse()
filtered_docs <- tipo_documento_bayer_brasil %>%
# filter(tipo_doc_faturamento %in% c("ZBF2", "ZBID", "ZBFR", "ZBFI", "Z6ZF")) %>% # Vendas
# filter(tipo_de_doc_2 %in% c("Venda","Venda Barter","Recusa","Devolução")) %>% # Devoluções
select(tipo_doc_faturamento, tipo_de_doc_2, tipo_doc)
df_doc <- nflists_bayer_brasil %>%
inner_join(filtered_docs, by = c("tipo_doc_fat" = "tipo_doc_faturamento"))
# df_doc %>%
# anti_join(campanhas_bayer_brasil %>% mutate(id = id %>% as.character), by = c("id_campanha" = "id")) %>%
# summarise(suma = sum(montante_encargo_imposto))
#
# df_doc %>%
# inner_join(campanhas_bayer_brasil %>% mutate(id = id %>% as.character), by = c("id_campanha" = "id")) %>%
# summarise(suma = sum(montante_encargo_imposto))
df_doc_camp <- df_doc %>%
left_join(campanhas_bayer_brasil %>% mutate(id = id %>% as.character()), by = c("id_campanha" = "id"))
df_to_model <- df_doc_camp %>%
select(
cliente, nome_do_cliente, cidade, regiao, nota_fiscal,
data_de_emissao, data_de_vencto, month, modalidade, montante_encargo_imposto, org_vendas, tipo_de_doc_2, tipo_doc_fat
)
terms_mix_bayer_brasil_analysis <- df_to_model %>%
mutate(
prazo = lubridate::as_date(data_de_vencto) - lubridate::as_date(data_de_emissao),
terms_mix = case_when(
modalidade %>% str_detect("Barter") ~ "barter",
modalidade %>% str_detect("CRA") ~ "CRA",
modalidade %>% str_detect("Rural") ~ "credito_rural",
prazo <= 0 ~ "Cash",
prazo <= 30 ~ "Short-Term",
prazo > 30 ~ "Traditional"
)
) %>%
# filter(terms_mix %>% is.na() %>% `!`()) %>%
mutate(
business = "crop_protection",
legacy = "bayer"
) %>%
mutate(data_de_emissao = lubridate::as_date(data_de_emissao)) %>%
filter(data_de_emissao <= lubridate::as_date("2020-03-31"), data_de_emissao >= lubridate::as_date("2020-01-01"))
clr <- readxl::read_excel("inst/extdata/data/bayer/clrs/terms_mix_compare.xlsx", sheet = "CLR") %>%
janitor::clean_names() %>%
mutate(data_doc = lubridate::as_date(data_doc)) %>%
filter(data_doc <= lubridate::as_date("2020-03-31"))
clr %>%
group_by(tipo_2) %>%
summarise(soma = sum(valor_brl))
to_bring <- terms_mix_bayer_brasil_analysis %>%
group_by(nome_do_cliente, nota_fiscal, tipo_doc_fat, tipo_de_doc_2, data_de_emissao, data_de_vencto, terms_mix) %>%
summarise(valor = sum(montante_encargo_imposto))
clr_join <- clr %>%
rename(nota_fiscal = nº_nota_fiscal) %>%
mutate(id = dplyr::row_number()) %>%
left_join(to_bring, by = c("nome_do_cliente", "nota_fiscal")) %>%
group_by(id) %>%
add_count() %>%
filter(nota_fiscal != "0000000000000000") %>%
mutate(clr_nflist = valor_brl - valor)
clr_join %>%
writexl::write_xlsx("compare/base_join.xlsx")
clr_join %>%
filter(n > 1)
clr_join %>%
group_by(tipo_2, tipo_de_doc_2) %>%
summarise(clr = sum(valor_brl), nflist = sum(valor)) %>%
writexl::write_xlsx("compare/totals1.xlsx")
clr_join %>%
group_by(tipo_2, tipo_de_doc_2, terms_mix) %>%
summarise(clr = sum(valor_brl), nflist = sum(valor)) %>%
writexl::write_xlsx("compare/totals2.xlsx")
terms_mix_bayer_brasil_analysis %>%
group_by(modalidade, tipo_de_doc_2, terms_mix) %>%
summarise(soma = sum(montante_encargo_imposto)) %>%
writexl::write_xlsx("compare/nflist_totals.xlsx")
# terms_mix_bayer_brasil_analysis %>%
# group_by(terms_mix) %>%
# summarise(soma = sum(montante_encargo_imposto)) %>%
# writexl::write_xlsx("compare/terms_mix_totals.xlsx")
clr %>%
group_by(tipo_2) %>%
summarise(valor_brl_total = sum(valor_brl)) %>%
writexl::write_xlsx("compare/clr_totals.xlsx")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.