#' Calculate the [h2o package extendedIsolationForest][h2o.extendedIsolationForest] outlier "score"
#'
#' `step_outliers_h2o.extendedIsolationForest` creates a *specification* of a recipe
#' step that will calculate the outlier score using [h2o.extendedIsolationForest] from `h2o`.
#'
#' @keywords datagen
#' @concept preprocessing
#' @inheritParams recipes::step_center
#' @importFrom h2o as.h2o h2o.init h2o.extendedIsolationForest h2o.predict h2o.shutdown
#' @param role not defined for this function
#' @param outlier_score a placeholder for the exit of this function don't change
#' @param columns A character string of variable names that will
#' be populated (eventually) by the terms argument.
#' @param name_mutate the name of the generated column with h2o.extendedIsolationForest scores
#' @param options a list with arguments to [h2o::h2o.extendedIsolationForest] function.
#' @param init_options a list with parameters to [h2o::h2o.init]
#' @return An updated version of `recipe` with the new step
#' added to the sequence of existing steps (if any), with the name on `name_mutate` and the scores calculated. For the
#' `tidy` method, a tibble with columns `index` (the row indexes of the tibble) and `outlier_score` (the scores).
#'
#' @export
#'
#' @details
#' All columns in the data are sampled and returned by [juice()]
#' and [bake()].
#'
#' When used in modeling, users should strongly consider using the
#' option `skip = TRUE` so that this operation is _not_
#' conducted outside of the training set.
#' @examples
#' library(recipes)
#' library(tidy.outliers)
#' rec <-
#' recipe(mpg ~ ., data = mtcars) %>%
#' step_outliers_h2o.extendedIsolationForest(all_predictors()) %>%
#' prep(mtcars)
#'
#' bake(rec, new_data = NULL)
#'
#' tidy(rec, number = 1)
step_outliers_h2o.extendedIsolationForest <- function(recipe,
...,
role = NA,
trained = FALSE,
outlier_score = NULL,
columns = NULL,
name_mutate = ".outliers_h2o.extendedIsolationForest",
options = list(
extension_level = 'max'
),
init_options = list(),
skip = TRUE,
id = rand_id("outliers_h2o.extendedIsolationForest")) {
## The variable selectors are not immediately evaluated by using
## the `quos()` function in `rlang`. `ellipse_check()` captures
## the values and also checks to make sure that they are not empty.
terms <- ellipse_check(...)
recipes_pkg_check(required_pkgs.step_outliers_h2o.extendedIsolationForest())
add_step(
recipe,
step_outliers_h2o.extendedIsolationForest_new(
terms = terms,
trained = trained,
role = role,
outlier_score = outlier_score,
columns = columns,
name_mutate = name_mutate,
options = options,
init_options = init_options,
skip = skip,
id = id
)
)
}
step_outliers_h2o.extendedIsolationForest_new <-
function(terms,
role,
trained,
outlier_score,
columns,
name_mutate,
options,
init_options,
skip,
id) {
step(
subclass = "outliers_h2o.extendedIsolationForest",
terms = terms,
role = role,
trained = trained,
outlier_score = outlier_score,
columns = columns,
name_mutate = name_mutate,
options = options,
init_options = init_options,
skip = skip,
id = id
)
}
get_train_score_h2o.extendedIsolationForest <- function(x, args = NULL,init_args = NULL) {
args$sample_size <- min(args$sample_size,nrow(x))
args$extension_level <- ifelse(args$extension_level == 'max',
ncol(x) - 1,
as.integer(args$extension_level))
rlang::exec("h2o.init",!!!init_args)
col_names <- colnames(x)
x_h2o <- as.h2o(x)
# Build an Extended Isolation forest model
model <- rlang::exec("h2o.extendedIsolationForest", training_frame = x_h2o,
x = col_names,
!!!args)
score <- h2o.predict(model, x_h2o)
anomaly_score <- score$anomaly_score
res <- anomaly_score |>
as_tibble() |>
pull('anomaly_score')
mean_result <- anomaly_score |> mean()
h2o.shutdown(prompt = FALSE)
return(res)
}
#' @export
prep.step_outliers_h2o.extendedIsolationForest <- function(x, training, info = NULL, ...) {
col_names <- recipes_eval_select(x$terms, training, info = info)
## You can add error trapping for non-numeric data here and so on.
# check_type(training[, col_names])
#
# subset_to_check <- training[col_names]
# nr_na <- colSums(is.na(subset_to_check))
# if (any(nr_na > 0)) {
# with_na <- names(nr_na[nr_na > 0])
# with_na_str <- paste(paste0("`", with_na, "`"), collapse = ", ")
# rlang::abort(paste0(
# "The following columns contain missing values: ",
# with_na_str, "."
# ))
# }
outlier_score <- training[, col_names] %>% get_train_score_h2o.extendedIsolationForest(args = x$options,
init_args = x$init_options)
## Use the constructor function to return the updated object.
## Note that `trained` is now set to TRUE
step_outliers_h2o.extendedIsolationForest_new(
terms = x$terms,
trained = TRUE,
role = x$role,
outlier_score = outlier_score,
columns = col_names,
name_mutate = x$name_mutate,
options = x$options,
init_options = x$init_options,
skip = x$skip,
id = x$id
)
}
#' @export
bake.step_outliers_h2o.extendedIsolationForest <- function(object, new_data, ...) {
new_data[[object$name_mutate]] <- object$outlier_score
new_data
}
format_prob <- function(step_outlier) {
x <- step_outlier$outlier_score
tibble::tibble(
index = seq_len(length(x)),
outlier_score = x
)
}
#' @rdname step_outliers_h2o.extendedIsolationForest
#' @param x A `step_outliers_h2o.extendedIsolationForest` object.
#' @export
tidy.step_outliers_h2o.extendedIsolationForest <- function(x, ...) {
if (is_trained(x)) {
res <- format_prob(x)
} else {
res <-
tibble(
index = seq_len(length(x)),
outlier_score = rlang::na_dbl
)
}
# Always return the step id:
res$id <- x$id
res
}
required_pkgs.step_outliers_h2o.extendedIsolationForest <- function(x, ...) {
c("h2o")
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.