#' Calculate the [outForest package][outForest] outlier "score"
#'
#' `step_outliers_outForest` creates a *specification* of a recipe
#' step that will calculate the outlier score using [outForest] from `outForest`, it internally handles missing data.
#'
#' @keywords datagen
#' @concept preprocessing
#' @importFrom purrr map_lgl
#' @inheritParams recipes::step_center
#' @import dplyr
#' @param role not defined for this function
#' @param outlier_score a placeholder for the exit of this function don't change
#' @param columns A character string of variable names that will
#' be populated (eventually) by the terms argument.
#' @param name_mutate the name of the generated column with outForest results
#' @importFrom outForest outForest
#' @param options a list with arguments to [outForest] function.
#' @param outlier_score_function a function to decide when there are multivariate outlier scores how to combine them, some examples would be sum or median
#' @param original_result an argument to return a tibble row with the original results of the function instead of an computed score
#' @return An updated version of `recipe` with the new step
#' added to the sequence of existing steps (if any), with the name on `name_mutate` and the probabilities calculated. For the
#' `tidy` method, a tibble with columns `index` (the row indexes of the tibble) and `outlier_score` (the scores).
#'
#' @export
#'
#' @details
#' All columns in the data are sampled and returned by [juice()]
#' and [bake()].
#'
#' All columns used in this step must be numeric with no missing data.
#'
#' When used in modeling, users should strongly consider using the
#' option `skip = TRUE` so that this operation is _not_
#' conducted outside of the training set.
#' @examples
#' library(recipes)
#' library(tidy.outliers)
#' rec <-
#' recipe(mpg ~ ., data = mtcars) %>%
#' step_outliers_outForest(all_numeric_predictors()) %>%
#' prep(mtcars)
#'
#' bake(rec, new_data = NULL)
#'
#' tidy(rec, number = 1)
#'
step_outliers_outForest <- function(recipe,
...,
role = NA,
trained = FALSE,
outlier_score = NULL,
columns = NULL,
name_mutate = ".outliers_outForest",
options = list(
formula = . ~ .,
replace = c("pmm", "predictions", "NA", "no"),
pmm.k = 3,
threshold = 3,
max_n_outliers = Inf,
max_prop_outliers = 1,
min.node.size = 40,
allow_predictions = FALSE,
impute_multivariate = TRUE,
impute_multivariate_control = list(pmm.k = 3, num.trees = 50, maxiter = 3L),
seed = NULL,
verbose = 0
),
outlier_score_function = mean,
original_result = FALSE,
skip = TRUE,
id = rand_id("outliers_outForest")) {
## The variable selectors are not immediately evaluated by using
## the `quos()` function in `rlang`. `ellipse_check()` captures
## the values and also checks to make sure that they are not empty.
terms <- ellipse_check(...)
recipes_pkg_check(required_pkgs.step_outliers_outForest())
add_step(
recipe,
step_outliers_outForest_new(
terms = terms,
trained = trained,
role = role,
outlier_score = outlier_score,
columns = columns,
name_mutate = name_mutate,
options = options,
outlier_score_function = outlier_score_function,
original_result = original_result,
skip = skip,
id = id
)
)
}
step_outliers_outForest_new <-
function(terms,
role,
trained,
outlier_score,
columns,
name_mutate,
options,
outlier_score_function,
original_result,
skip,
id) {
step(
subclass = "outliers_outForest",
terms = terms,
role = role,
trained = trained,
outlier_score = outlier_score,
columns = columns,
name_mutate = name_mutate,
options = options,
outlier_score_function = outlier_score_function,
original_result = original_result,
skip = skip,
id = id
)
}
#' Gets the score outForest
#'
#'
#' @param x the data.
#' @param args args to pass to outForest
#' @param original_result whether to return tibbles
#' @param outlier_score_function the function to summarize scores across rows
#'
#' @noRd
#' @keywords internal
get_train_score_outForest <- function(x, args, original_result, outlier_score_function) {
out <- rlang::exec("outForest", data = x, !!!args)
data_outliers <- out$outliers |>
tibble::as_tibble()
if (original_result) {
nest_outlier <- data_outliers |>
dplyr::nest_by(row)
res <- x |>
dplyr::mutate(
row = row_number(),
col = NA_character_,
observed = NA_real_,
predicted = NA_real_,
rmse = NA_real_,
score = NA_real_,
threshold = NA_real_,
replacement = NA_real_,
.keep = "none"
) |>
dplyr::nest_by(row) |>
dplyr::ungroup() |>
dplyr::left_join(nest_outlier, by = "row") |>
dplyr::mutate(score = if_else(map_lgl(.data$data.y, is.null), .data$data.x, .data$data.y), .keep = "none")
return(res)
}
summarise_outlier <- data_outliers |>
group_by(row) |>
summarise(outlier_score = abs(.data$score) |> outlier_score_function(), .groups = "drop")
res <- x |>
mutate(
row = row_number(),
not_outlier_score = 0,
.keep = "none"
) |>
left_join(summarise_outlier, by = "row") |>
mutate(score = coalesce(.data$outlier_score, .data$not_outlier_score)) |>
reframe(score = percent_rank(.data$score)) |>
pull(score)
return(res)
}
#' @export
prep.step_outliers_outForest <- function(x, training, info = NULL, ...) {
col_names <- recipes_eval_select(x$terms, training, info = info)
## You can add error trapping for non-numeric data here and so on.
check_type(training[, col_names])
# subset_to_check <- training[col_names]
# nr_na <- colSums(is.na(subset_to_check))
# if (any(nr_na > 0)) {
# with_na <- names(nr_na[nr_na > 0])
# with_na_str <- paste(paste0("`", with_na, "`"), collapse = ", ")
# rlang::abort(paste0(
# "The following columns contain missing values: ",
# with_na_str, "."
# ))
# }
outlier_score <- training[, col_names] %>% get_train_score_outForest(
args = x$options,
original_result = x$original_result,
outlier_score_function = x$outlier_score_function
)
## Use the constructor function to return the updated object.
## Note that `trained` is now set to TRUE
step_outliers_outForest_new(
terms = x$terms,
trained = TRUE,
role = x$role,
outlier_score = outlier_score,
columns = col_names,
name_mutate = x$name_mutate,
options = x$options,
outlier_score_function = x$outlier_score_function,
original_result = x$original_result,
skip = x$skip,
id = x$id
)
}
#' @export
bake.step_outliers_outForest <- function(object, new_data, ...) {
new_data[[object$name_mutate]] <- object$outlier_score
new_data
}
format_prob <- function(step_outlier) {
x <- step_outlier$outlier_score
tibble::tibble(
index = seq_len(length(x)),
outlier_score = x
)
}
#' @rdname step_outliers_outForest
#' @param x A `step_outliers_outForest` object.
#' @export
tidy.step_outliers_outForest <- function(x, ...) {
if (is_trained(x)) {
res <- format_prob(x)
} else {
res <-
tibble(
index = seq_len(length(x)),
outlier_score = rlang::na_dbl
)
}
# Always return the step id:
res$id <- x$id
res
}
#' @export
tunable.step_outliers_outForest <- function(x, ...) {
outlier_score_function <- tibble::tibble(
name = c("outlier_score_function"),
call_info = list(list(pkg = "tidy.outliers", fun = "aggregation")),
source = "recipe",
component = "step_outliers_outForest",
component_id = x$id
)
dplyr::bind_rows(outlier_score_function)
}
required_pkgs.step_outliers_outForest <- function(x, ...) {
c("outForest")
}
#' @import utils
utils::globalVariables(c("score"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.