#' Calculate the aggregation of a set of outlier columns and filters the resulting tibble
#'
#' `step_outliers_remove` creates a *specification* of a recipe
#' step that will calculate the score of the row of selected columns using an aggregation function and filter the resulting tibble based on the filter function
#'
#' @keywords datagen
#' @concept preprocessing
#' @inheritParams recipes::step_center
#' @param ... One or more selector functions to choose which
#' variables will be transformed. See [selections()] for
#' more details. For the `tidy` method, these are not
#' currently used.
#' @param role not defined for this function
#' @param aggregation_function a function that returns a value between 0 and 1 on an applied row
#' @param score_dropout a value between 0 and 1 to decide outliers uses ">=" rule
#' @param col_names name of the columns being operated on, after filtering they will be removed
#' @param outliers_indexes placeholder for the tidy method
#' @param aggregation_results a placeholder for the vector of probabilities
#'
#' @return An updated version of `recipe` with the new step
#' added to the sequence of existing steps (if any), with the name on `name_mutate` and the probabilities calculated. For the
#' `tidy` method, a tibble with columns `index` (the row indexes of the tibble), `outliers` (the filtered outliers), `aggregation_results` the "probabilities calculated".
#'
#' @export
#'
#' @details
#' All columns in the data are sampled and returned by [juice()]
#' and [bake()].
#'
#' All columns used in this step must be numeric with no missing data.
#'
#' When used in modeling, users should strongly consider using the
#' option `skip = TRUE` so that this operation is _not_
#' conducted outside of the training set.
#' @examples
#' library(recipes)
#' library(tidy.outliers)
#' rec <-
#' recipe(mpg ~ ., data = mtcars) %>%
#' step_outliers_maha(all_numeric_predictors()) %>%
#' step_outliers_remove(contains(r"(.outliers)")) %>%
#' prep(mtcars)
#'
#' bake(rec, new_data = NULL)
#'
#' tidy(rec, number = 2)
step_outliers_remove <- function(recipe,
...,
aggregation_function = mean,
score_dropout = .95,
outliers_indexes = NULL,
aggregation_results = NULL,
col_names = NULL,
role = NA,
trained = FALSE,
skip = TRUE,
id = rand_id("outliers_remove")) {
## The variable selectors are not immediately evaluated by using
## the `quos()` function in `rlang`. `ellipse_check()` captures
## the values and also checks to make sure that they are not empty.
terms <- ellipse_check(...)
add_step(
recipe,
step_outliers_remove_new(
terms = terms,
trained = trained,
role = role,
aggregation_function = aggregation_function,
score_dropout = score_dropout,
outliers_indexes = outliers_indexes,
aggregation_results = aggregation_results,
col_names = col_names,
skip = skip,
id = id
)
)
}
step_outliers_remove_new <-
function(terms,
role,
trained,
aggregation_function = aggregation_function,
score_dropout = score_dropout,
outliers_indexes = outliers_indexes,
aggregation_results = aggregation_results,
col_names = col_names,
skip,
id) {
step(
subclass = "outliers_remove",
terms = terms,
role = role,
trained = trained,
aggregation_function = aggregation_function,
score_dropout = score_dropout,
outliers_indexes = outliers_indexes,
aggregation_results = aggregation_results,
col_names = col_names,
skip = skip,
id = id
)
}
get_outliers_combination <- function(x, aggregation_function, score_dropout) {
aggregation_results <- apply(x, 1, aggregation_function)
outliers_indexes <- which(aggregation_results >= score_dropout)
list(outliers_indexes = outliers_indexes, aggregation_results = aggregation_results)
}
#' @export
prep.step_outliers_remove <- function(x, training, info = NULL, ...) {
col_names <- recipes_eval_select(x$terms, training, info = info)
## You can add error trapping for non-numeric data here and so on.
check_type(training[, col_names])
outliers_combination <- get_outliers_combination(training[, col_names],
aggregation_function = x$aggregation_function,
score_dropout = x$score_dropout
)
outliers_indexes <- outliers_combination$outliers_indexes
aggregation_results <- outliers_combination$aggregation_results
## Use the constructor function to return the updated object.
## Note that `trained` is now set to TRUE
step_outliers_remove_new(
terms = x$terms,
trained = TRUE,
role = x$role,
aggregation_function = x$aggregation_function,
score_dropout = x$score_dropout,
outliers_indexes = outliers_indexes,
aggregation_results = aggregation_results,
col_names = col_names,
skip = x$skip,
id = x$id
)
}
#' @export
bake.step_outliers_remove <- function(object, new_data, ...) {
if (identical(object$outliers_indexes, as.integer())) {
# check for when nothing was filtered out
# do nothing
} else {
new_data <- new_data[-object$outliers_indexes, ]
}
## Remove all extra columns
new_data <- new_data[, !names(new_data) %in% object$col_names, drop = F]
## Always convert to tibbles on the way out
tibble::as_tibble(new_data)
}
format_remove <- function(step_outlier) {
outliers_indexes <- step_outlier$outliers_indexes
aggregation_results <- step_outlier$aggregation_results
original_length <- length(aggregation_results)
index <- seq_len(original_length)
outliers <- index %in% outliers_indexes
tibble::tibble(
index = index,
outliers = outliers,
aggregation_results = aggregation_results
)
}
#' @rdname step_outliers_remove
#' @param x A `step_outliers_remove` object.
#' @export
tidy.step_outliers_remove <- function(x, ...) {
if (is_trained(x)) {
res <- format_remove(x)
} else {
res <-
tibble(
index = seq_len(length(x)),
outliers = FALSE,
aggregation_results = 0
)
}
}
#' @export
tunable.step_outliers_remove <- function(x, ...) {
score_dropout <- tibble::tibble(
name = c("score_dropout"),
call_info = list(list(pkg = "dials", fun = "dropout")),
source = "recipe",
component = "step_outliers_remove",
component_id = x$id
)
aggregation_function <- tibble::tibble(
name = c("aggregation_function"),
call_info = list(list(pkg = "tidy.outliers", fun = "aggregation")),
source = "recipe",
component = "step_outliers_remove",
component_id = x$id
)
dplyr::bind_rows(score_dropout, aggregation_function)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.