library(dplyr)
library(ggplot2)
source('./R/modular_functions.R')
# replicate gilks & wild simulation
x1 <- c(-.5, -1, -2, -5, -10, -9, -8, -7, -6)
x2 <- c(.5, 1, 2, 5, 10, 1, 2, 3, 4)
df <- data.frame(x1 = double(), x2 = double(), x_abs_added = integer(),
total_iters = integer(), samples_rejected = integer())
set.seed(2)
for(p in 1:length(x1)){
for(q in 1:100){
out <- ars(1, c(x1[p], x2[p]), dnorm, c(mean = 0, sd = 1), c(-Inf,Inf))
k <- unname(out[2])
i <- unname(out[3])
m <- unname(out[4])
df <- rbind(df, c(x1 = x1[p], x2 = x2[p], x_abs_added = k,
total_iters = i, samples_rejected = m))
q <- q + 1
}
}
res <- df %>% group_by(x1, x2) %>% summarise(mean_iters = mean(total_iters),
max_iters = max(total_iters),
mean_rej = mean(samples_rejected),
max_rej = max(samples_rejected),
mean_abs_added = mean(x_abs_added),
max_abs_added = max(x_abs_added))
write.table(res, "./report/table.csv", sep = ',')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.