make_gen_additive_mod <- function() {
parsnip::set_new_model("gen_additive_mod")
}
make_gen_additive_mod_mgcv_gam <- function() {
#### REGRESION
model = "gen_additive_mod"
mode = "regression"
engine = "gam"
parsnip::set_model_engine(model = model, mode = mode, eng = engine)
parsnip::set_dependency(model = model, eng = engine, pkg = "mgcv")
parsnip::set_dependency(model = model, eng = engine, pkg = "modelgam")
#Args
parsnip::set_model_arg(
model = "gen_additive_mod",
eng = "gam",
parsnip = "select_features",
original = "select",
func = list(pkg = "modelgam", fun = "select_features"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = "gen_additive_mod",
eng = "gam",
parsnip = "adjust_deg_free",
original = "gamma",
func = list(pkg = "modelgam", fun = "adjust_deg_free"),
has_submodel = FALSE
)
parsnip::set_encoding(
model = model,
eng = engine,
mode = mode,
options = list(
predictor_indicators = "none",
compute_intercept = FALSE,
remove_intercept = FALSE,
allow_sparse_x = FALSE
)
)
parsnip::set_fit(
model = model,
eng = engine,
mode = mode,
value = list(
interface = "formula",
protect = c("formula", "data"),
func = c(pkg = "mgcv", fun = "gam"),
defaults = list(
select = FALSE,
gamma = 1
)
)
)
parsnip::set_pred(
model = model,
eng = engine,
mode = mode,
type = "numeric",
value = list(
pre = NULL,
post = function(x, object) as.numeric(x),
func = c(fun = "predict"),
args = list(
object = rlang::expr(object$fit),
newdata = rlang::expr(new_data),
type = "response"
)
)
)
parsnip::set_pred(
model = model,
eng = engine,
mode = mode,
type = "conf_int",
value = list(
pre = NULL,
post = function(results, object) {
res <-tibble::tibble(.pre_lower = results$fit - 2*results$se.fit,
.pre_upper = results$fit + 2*results$se.fit)
},
func = c(fun = "predict"),
args = list(
object = rlang::expr(object$fit),
newdata = rlang::expr(new_data),
type = "link",
se.fit = TRUE
)
)
)
parsnip::set_pred(
model = model,
eng = engine,
mode = mode,
type = "raw",
value = list(
pre = NULL,
post = NULL,
func = c(fun = "predict"),
args = list(
object = rlang::expr(object$fit),
newdata = rlang::expr(new_data)
)
)
)
#### CLASSIFICATION
model = "gen_additive_mod"
mode = "classification"
engine = "gam"
parsnip::set_model_engine(model = model, mode = mode, eng = engine)
parsnip::set_dependency(model = model, eng = engine, pkg = "mgcv")
parsnip::set_dependency(model = model, eng = engine, pkg = "modelgam")
parsnip::set_encoding(
model = model,
eng = engine,
mode = mode,
options = list(
predictor_indicators = "none",
compute_intercept = FALSE,
remove_intercept = FALSE,
allow_sparse_x = FALSE
)
)
parsnip::set_fit(
model = model,
eng = engine,
mode = mode,
value = list(
interface = "formula",
protect = c("formula", "data"),
func = c(pkg = "mgcv", fun = "gam"),
defaults = list(
select = FALSE,
gamma = 1,
family = stats::binomial(link = "logit")
)
)
)
prob_to_class_2 <- function(x, object){
x <- ifelse(x >= 0.5, object$lvl[2], object$lvl[1])
unname(x)
}
parsnip::set_pred(
model = model,
eng = engine,
mode = mode,
type = "class",
value = list(
pre = NULL,
post = function(results, object) {
tbl <-tibble::as_tibble(results)
if (ncol(tbl)==1){
res<-prob_to_class_2(tbl, object) %>%
tibble::as_tibble() %>%
stats::setNames("values") %>%
dplyr::mutate(values = as.factor(values))
} else{
res <- tbl %>%
apply(.,1,function(x) which(max(x)==x)[1])-1 %>% #modify in the future for something more elegant when gets the formula ok
tibble::as_tibble()
}
},
func = c(fun = "predict"),
args = list(
object = rlang::expr(object$fit),
newdata = rlang::expr(new_data),
type = "response"
)
)
)
parsnip::set_pred(
model = model,
eng = engine,
mode = mode,
type = "prob",
value = list(
pre = NULL,
post = function(results, object) {
res <-tibble::as_tibble(results)
},
func = c(fun = "predict"),
args = list(
object = rlang::expr(object$fit),
newdata = rlang::expr(new_data),
type = "response"
)
)
)
parsnip::set_pred(
model = model,
eng = engine,
mode = mode,
type = "raw",
value = list(
pre = NULL,
post = NULL,
func = c(fun = "predict"),
args = list(
object = rlang::expr(object$fit),
newdata = rlang::expr(new_data)
)
)
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.