# These functions are tested indirectly when the models are used. Since this
# function is executed on package startup, you can't execute them to test since
# they are already in the parsnip model database. We'll exclude them from
# coverage stats for this reason.
# nocov
# DeepAR ----
make_gp_forecaster <- function() {
# SETUP
model <- "gp_forecaster"
mode <- "regression"
eng <- "gluonts_gp_forecaster"
parsnip::set_new_model(model)
parsnip::set_model_mode(model, mode)
# deep_ar: regression ----
# * Model ----
parsnip::set_model_engine(model, mode = mode, eng = eng)
parsnip::set_dependency(model, eng = eng, pkg = "reticulate")
parsnip::set_dependency(model, eng = eng, pkg = "modeltime.gluonts")
# * Args ----
# MODELTIME ARGS ----
parsnip::set_model_arg(
model = model,
eng = eng,
parsnip = "id",
original = "id",
func = list(pkg = "modeltime.gluonts", fun = "id"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = model,
eng = eng,
parsnip = "freq",
original = "freq",
func = list(pkg = "modeltime.gluonts", fun = "freq"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = model,
eng = eng,
parsnip = "prediction_length",
original = "prediction_length",
func = list(pkg = "modeltime.gluonts", fun = "prediction_length"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = model,
eng = eng,
parsnip = "scale",
original = "scale_by_id",
func = list(pkg = "modeltime.gluonts", fun = "scale"),
has_submodel = FALSE
)
# TRAINER ARGS ----
parsnip::set_model_arg(
model = model,
eng = eng,
parsnip = "lookback_length",
original = "context_length",
func = list(pkg = "modeltime.gluonts", fun = "lookback_length"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = model,
eng = eng,
parsnip = "epochs",
original = "epochs",
func = list(pkg = "dials", fun = "epochs"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = model,
eng = eng,
parsnip = "batch_size",
original = "batch_size",
func = list(pkg = "dials", fun = "batch_size"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = model,
eng = eng,
parsnip = "num_batches_per_epoch",
original = "num_batches_per_epoch",
func = list(pkg = "modeltime.gluonts", fun = "num_batches_per_epoch"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = model,
eng = eng,
parsnip = "learn_rate",
original = "learning_rate",
func = list(pkg = "dials", fun = "learn_rate"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = model,
eng = eng,
parsnip = "learn_rate_decay_factor",
original = "learning_rate_decay_factor",
func = list(pkg = "modeltime.gluonts", fun = "learn_rate_decay_factor"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = model,
eng = eng,
parsnip = "learn_rate_min",
original = "minimum_learning_rate",
func = list(pkg = "modeltime.gluonts", fun = "learn_rate_min"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = model,
eng = eng,
parsnip = "patience",
original = "patience",
func = list(pkg = "modeltime.gluonts", fun = "patience"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = model,
eng = eng,
parsnip = "clip_gradient",
original = "clip_gradient",
func = list(pkg = "modeltime.gluonts", fun = "clip_gradient"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = model,
eng = eng,
parsnip = "penalty",
original = "weight_decay",
func = list(pkg = "dials", fun = "penalty"),
has_submodel = FALSE
)
#
# * Encoding ----
parsnip::set_encoding(
model = model,
eng = eng,
mode = mode,
options = list(
predictor_indicators = "none",
compute_intercept = FALSE,
remove_intercept = FALSE,
allow_sparse_x = FALSE
)
)
# * Fit ----
parsnip::set_fit(
model = model,
eng = eng,
mode = mode,
value = list(
interface = "data.frame",
protect = c("x", "y"),
func = c(fun = "gp_forecaster_fit_impl"),
defaults = list()
)
)
# * Predict ----
parsnip::set_pred(
model = model,
eng = eng,
mode = mode,
type = "numeric",
value = list(
pre = NULL,
post = NULL,
func = c(fun = "predict"),
args =
list(
object = rlang::expr(object$fit),
new_data = rlang::expr(new_data)
)
)
)
}
# nocov end
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.