#' @title ADAGES knockoff filter
#'
#' @description
#' This function runs the whole ADAGES procedure in the multiple knockoff setting, i.e.
#' it generates multiple knockoff matrices, estimates the score functions and the selection sets
#' of multiple knockoff runs, which are then aggregated by ADAGES to obtain the final selection set.
#'
#' @param X n x p matrix or data frame of original variables.
#' @param y response vector of length n.
#' @param knockoffs function for the knockoff construction. It must take the n x p matrix as input
#' and it must return a n x p knockoff matrix. Either choose a knockoff sampler of
#' the \code{knockoff} package or define it manually. Default: \code{create.second_order} (see below).
#' @param statistic function that computes the score vector \eqn{W} of length p. It must take the data matrix,
#' knockoff matrix and response vector as input and outputs a vector of computed
#' scores. Either choose one score statistic from the \code{knockoff} package or
#' define it manually. Default: \code{stat.glmnet_coefdiff} (see below).
#' @param q nominal level for the FDR control. Default: 0.2.
#' @param K number of knockoff runs. Default: 5.
#' @param offset either 0 (knockoff) or 1 (knockoff+). Default: 1.
#' @param type either \code{"ADAGES"} (default) or \code{"ADAGES.mod"} (see below).
#' @param sets logical argument if the K selection sets of each knockoff run
#' should be returned. Default: \code{FALSE}.
#'
#' @return A list containing following components:
#' \item{Shat}{aggregated selection set.}
#' \item{c}{optimal threshold.}
#' \item{K}{number of knockoff runs.}
#' \item{sets}{if specified, individual selection sets of each knockoff run.}
#'
#' @details
#'
#' This function requires the installation of the \code{knockoff} package prior to its execution.
#'
#' The default knockoff sampler \code{create.second_order} is the second-order Gaussian knockoff construction from
#' the \code{knockoff} package.
#'
#' The default score function \code{stat.glmnet_coefdiff} is from the \code{knockoff} package.
#' It fits a Lasso regression where the regularization parameter \eqn{\lambda} is tuned by cross-validation.
#' Then, the score is computed as the difference between
#' \deqn{W_j = |Z_j| - |\tilde{Z}_j|}
#' where \eqn{Z_j} and \eqn{\tilde{Z}_j} are the coefficient estimates for the
#' jth variable and its knockoff, respectively.
#'
#' \code{ADAGES} applies the minimization of the complexity ratio as a criterion to determine
#' the optimal threshold.
#'
#' \code{ADAGES.mod} minimizes the trade-off between the threshold and the model complexity \eqn{c |S|}
#' to determine the optimal threshold.
#'
#' @references
#' Gui (2020). \emph{ADAGES: adaptive aggregation with stability for distributed feature selection}.
#' Proceedings of the 2020 ACM-IMS on Foundations of Data Science Conference.
#' \url{https://arxiv.org/pdf/2007.10776.pdf}
#'
#' @examples
#' n <- 400; p <- 200; s_0 <- 30
#' amplitude <- 1; mu <- rep(0,p); rho <- 0.25
#' Sigma <- toeplitz(rho^(0:(p-1)))
#'
#' X <- MASS::mvrnorm(n, mu, Sigma)
#' nonzero <- sample(p, s_0)
#' beta <- amplitude * (1:p %in% nonzero)
#' y <- X %*% beta + rnorm(n)
#'
#' # Basic usage with default arguments
#' res.ADAGES <- run.ADAGES(X, y, sets = TRUE)
#' res.ADAGES
#'
#' # Advanced usage with customized knockoff construction (equi-correlated)
#' equi.knock <- function(X) create.second_order(X, method = "equi")
#' res.ADAGES <- run.ADAGES(X, y, knockoffs = equi.knock, sets = TRUE)
#' res.ADAGES
#'
#' @export
run.ADAGES <- function(X, y,
knockoffs = create.second_order,
statistic = stat.glmnet_coefdiff,
q = 0.2, K = 5, offset = 1,
type = "ADAGES", sets = FALSE){
library(knockoff)
#Validate input checks
if (is.data.frame(X)) {
X.names = names(X)
X = as.matrix(X, rownames.force = F)
} else if (is.matrix(X)) {
X.names = colnames(X)
} else {
stop('Input X must be a numeric matrix or data frame')
}
if (!is.numeric(X)) stop('Input X must be a numeric matrix or data frame')
if (!is.factor(y) && !is.numeric(y)) {
stop('Input y must be either of numeric or factor type')
}
if(is.numeric(y)) y = as.vector(y)
n = nrow(X); p = ncol(X)
stopifnot(length(y) == n)
if(offset!=1 && offset!=0) {
stop('Input offset must be either 0 or 1')
}
if(q < 0 | q > 1) {
stop('q must be between 0 and 1')
}
#For New part Checks
if (!is.function(knockoffs)) stop('Input knockoffs must be a function')
if (!is.function(statistic)) stop('Input statistic must be a function')
if(!K == round(K)){
stop("K must be an integer")
}
#Knockoff construction
Xk <- multi.knockoffs(X = X, K = K, knockoffs = knockoffs)
#Knockoff filters
multi.filter <- multi.knockfilter(X, Xk, y, q = q, offset = offset,
statistic = statistic)
Shat.list <- multi.filter$Shat.list
if(type == "ADAGES"){
res <- agg.ADAGES(Shat.list = Shat.list, p = p)
}
else if(type == "ADAGES.mod"){
res <- agg.ADAGES.mod(Shat.list = Shat.list, p = p)
}
else{
stop("Unknown type of ADAGES method")
}
if(sets == TRUE){
res$sets <- Shat.list
}
return(res)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.