## ---- warning=FALSE, message=FALSE, eval=FALSE--------------------------------
# # You may need following codes to install dependent packages.
# if (!requireNamespace("BiocManager", quietly = TRUE))
# install.packages("BiocManager")
#
# BiocManager::install("fgsea")
# BiocManager::install("MAST")
# install.packages("Seurat")
#
# library(devtools)
# install_github("cailab-tamu/scTypeGSEA")
## -----------------------------------------------------------------------------
library(scTypeGSEA)
## ---- warning=FALSE-----------------------------------------------------------
pbmc_example_res <- assignCellType(small_RNA, min.cells = 1, min.features = 10,
nfeatures = 100, npcs = 10,
dims = 1:10, k.param = 5, resolution = 0.75,
min.pct = 0.25, test.use = "MAST", minSize = 5)
## -----------------------------------------------------------------------------
pbmc_example_res$Seurat_obj
## -----------------------------------------------------------------------------
head(pbmc_example_res$cell_mat)
## -----------------------------------------------------------------------------
head(pbmc_example_res$cluster_celltype)
## ---- warning=FALSE-----------------------------------------------------------
library(scTypeGSEA)
pbmc <- scqc(pbmc_raw, min.cells = 3, min.features = 200, percent.mt = 5,
normalization.method = "LogNormalize", scale.factor = 10000,
selection.method = "vst", nfeatures = 2000, npcs = 50)
pbmc
## ---- warning=FALSE-----------------------------------------------------------
set.seed(47)
pbmc <- doClustering(pbmc, dims = 1:50, k.param = 20, resolution = 0.5)
head(pbmc@meta.data$seurat_clusters)
## ---- eval=FALSE--------------------------------------------------------------
# ## don't run
# pbmc <- doClustering(pbmc, cluster_cell = Your_cluster_list_for_cell)
## ---- warning=FALSE-----------------------------------------------------------
cluster_list <- getFC(pbmc, min.pct = 0.25, test.use = "MAST")
head(cluster_list[[1]])
## ---- warning=FALSE-----------------------------------------------------------
cluster_celltype <- doGSEA(cluster_list = cluster_list, db = "PanglaoDB_list",
minSize = 15, maxSize = 500)
head(cluster_celltype)
## ---- eval=FALSE--------------------------------------------------------------
# ## Don't run
# cluster_celltype <- doGSEA(cluster_list = cluster_list, db = "path/to/your/rdsfile")
## ---- warning=FALSE-----------------------------------------------------------
pbmc_res <- labelCelltype(pbmc, cluster_celltype)
## -----------------------------------------------------------------------------
pbmc_res$obj
## -----------------------------------------------------------------------------
head(pbmc_res$cell_mat)
## ---- warning=FALSE, message=FALSE, fig.height=5------------------------------
library(Seurat)
pbmc <- pbmc_res$obj
pbmc <- Seurat::RunTSNE(pbmc, dims = 1:30)
Seurat::DimPlot(pbmc, reduction = "tsne", label = TRUE, pt.size = 0.5) + NoLegend()
## ---- warning=FALSE, message=FALSE, eval=FALSE--------------------------------
# if (!requireNamespace("BiocManager", quietly = TRUE))
# install.packages("BiocManager")
#
# BiocManager::install("GenomeInfoDb")
# BiocManager::install("ensembldb")
# BiocManager::install("EnsDb.Hsapiens.v75")
# BiocManager::install("GenomicRanges")
#
# library(devtools)
# install_github("timoast/signac")
## ---- message = FALSE, warning = FALSE----------------------------------------
annotation.file <- "~/Documents/Single cell/package example/R package/atac2rna/dataset/Homo_sapiens.GRCh37.82.gtf"
ATAC_example_res <- assignCellType(small_ATAC, datatype = "ATAC", annotation.file = annotation.file,
min.cells = 1, min.features = 10, nfeatures = 100, npcs = 10,
dims = 1:10, k.param = 5, resolution = 0.75,
min.pct = 0.25, test.use = "MAST", minSize = 5)
## -----------------------------------------------------------------------------
ATAC_example_res$Seurat_obj
head(ATAC_example_res$cell_mat)
head(ATAC_example_res$cluster_celltype)
## ---- eval = FALSE------------------------------------------------------------
# ## don't run
# ATAC_example <- atac2rna(small_ATAC, annotation.file = annotation.file)
# ATAC_example <- scqc(ATAC_example, min.cells = 1, min.features = 10, nfeatures = 100, npcs = 10)
# ATAC_example <- doClustering(ATAC_example, dims = 1:10, k.param = 5, resolution = 0.75)
# cluster_list <- getFC(ATAC_example, min.pct = 0.25, test.use = "MAST")
# cluster_celltype <- doGSEA(cluster_list = cluster_list, minSize = 5)
# ATAC_example_res <- labelCelltype(ATAC_example, cluster_celltype)
## ---- eval = FALSE------------------------------------------------------------
# obj <- scqc(dta, datatype = "Antibody Capture", min.cells = 1, min.features = 10)
## ---- eval = FALSE------------------------------------------------------------
# obj <- doClustering(obj, datatype = "Antibody Capture")
## ---- eval = FALSE------------------------------------------------------------
# cluster_list <- getFC(obj, min.pct = 0.25, test.use = "wilcox")
## ---- eval = FALSE------------------------------------------------------------
# cluster_celltype <- doGSEA(cluster_list = cluster_list, db = "path/to/your/rdsfile")
## ---- eval = FALSE------------------------------------------------------------
# obj_res <- labelCelltype(obj, cluster_celltype)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.