#' Use Bayesian analysis of additive models to infill and project data
#'
#' `predict_inla()` uses a Integrated Nested Laplace approximation to fit a model
#' and use that model to infill and project the dependent variable. The function
#' uses [INLA::inla()] to perform the model fitting and prediction, and full
#' details and explanation of arguments that it can accept is available on that page.
#' The function also allows for inputting of data type and source information
#' directly into the data frame if the `type_col` and `source_col` are specified
#' respectively.
#'
#' @inherit predict_general_mdl params return
#' @param control.predictor Used to set `compute = TRUE` to ensure that the posterior
#' marginals of the fitted values are obtained and the mean and standard deviation
#' of the fitted values returned for use in the infilling and predictions. Additional
#' arguments can be passed in the `control.predictor` list, but must always include
#' `compute = TRUE`. See [INLA::control.predictor()] for details.
#' @param ... Additional arguments passed to [INLA::inla()].
#' @param filter_na Character value specifying how, if at all, to filter `NA`
#' values from the dataset prior to applying the model. By default, only
#' observations with missing predictors are removed, although it can also remove
#' rows only if they have missing dependent or independent variables, or no
#' filtering at all. Model prediction and fitting are done in one pass with
#' [INLA::inla()], so there will be no predictions if observations with
#' missing dependent variables are removed.
#'
#' @export
predict_inla <- function(df,
formula,
control.predictor = list(compute = TRUE),
...,
ret = c("df", "all", "error", "model"),
scale = NULL,
probit = FALSE,
test_col = NULL,
test_period = NULL,
test_period_flex = NULL,
group_col = "iso3",
group_models = FALSE,
obs_filter = NULL,
sort_col = "year",
sort_descending = FALSE,
pred_col = "pred",
pred_upper_col = "pred_upper",
pred_lower_col = "pred_lower",
upper_col = "upper",
lower_col = "lower",
filter_na = c("predictors", "response", "all", "none"),
type_col = NULL,
types = c("imputed", "imputed", "projected"),
source_col = NULL,
source = NULL,
scenario_detail_col = NULL,
scenario_detail = NULL,
replace_obs = c("missing", "all", "none"),
error_correct = FALSE,
error_correct_cols = NULL,
shift_trend = FALSE) {
# Assertions and error checking
assert_inla()
df <- assert_df(df)
formula_vars <- parse_formula(formula)
assert_columns(df, formula_vars, test_col, group_col, sort_col, type_col, source_col, error_correct_cols)
assert_group_models(group_col, group_models)
response <- formula_vars[1]
assert_columns_unique(response, pred_col, pred_upper_col, pred_lower_col, lower_col, upper_col, test_col, group_col, sort_col, type_col, source_col)
ret <- rlang::arg_match(ret)
assert_test_col(df, test_col)
assert_string(pred_col, 1)
assert_string(pred_upper_col, 1)
assert_string(pred_lower_col, 1)
assert_string(upper_col, 1)
assert_string(lower_col, 1)
filter_na <- rlang::arg_match(filter_na)
assert_string(types, 3)
assert_string(source, 1)
replace_obs <- rlang::arg_match(replace_obs)
obs_filter <- parse_obs_filter(obs_filter, response)
# Scale response variable
if (!is.null(scale)) {
df <- scale_transform(df, formula_vars[1], scale = scale)
}
# Transform response variable to probit space
if (probit) {
df <- probit_transform(df, formula_vars[1])
}
mdl_df <- fit_inla_model(df = df,
formula = formula,
control.predictor = control.predictor,
...,
formula_vars = formula_vars,
test_col = test_col,
group_col = group_col,
group_models = group_models,
obs_filter = obs_filter,
sort_col = sort_col,
sort_descending = sort_descending,
pred_col = pred_col,
pred_upper_col = pred_upper_col,
pred_lower_col = pred_lower_col,
filter_na = filter_na,
ret = ret,
error_correct = error_correct,
error_correct_cols = error_correct_cols,
shift_trend = shift_trend)
mdl <- mdl_df[["mdl"]]
df <- mdl_df[["df"]]
if (ret == "model") {
return(mdl)
}
# Untransform variables
if (probit) {
df <- probit_transform(df,
c(formula_vars[1],
pred_col,
pred_upper_col,
pred_lower_col),
inverse = TRUE)
}
# Unscale variables
if (!is.null(scale)) {
df <- scale_transform(df,
c(formula_vars[1],
pred_col,
pred_upper_col,
pred_lower_col),
scale = scale,
divide = FALSE)
}
# Get error if being returned
if (ret %in% c("all", "error")) {
err <- model_error(df = df,
response = formula_vars[1],
test_col = test_col,
test_period = test_period,
test_period_flex = test_period_flex,
group_col = group_col,
sort_col = sort_col,
sort_descending = sort_descending,
pred_col = pred_col,
pred_upper_col = pred_upper_col,
pred_lower_col = pred_lower_col)
if (ret == "error") {
return(err)
}
}
# Merge predictions into observations
df <- merge_prediction(df = df,
response = formula_vars[1],
group_col = group_col,
obs_filter = obs_filter,
sort_col = sort_col,
sort_descending = sort_descending,
pred_col = pred_col,
pred_upper_col = pred_upper_col,
pred_lower_col = pred_lower_col,
upper_col = upper_col,
lower_col = lower_col,
type_col = type_col,
types = types,
source_col = source_col,
source = source,
scenario_detail_col = scenario_detail_col,
scenario_detail = scenario_detail,
replace_obs = replace_obs)
if (ret == "df") {
return(df)
} else if (ret == "all") {
list(df = df,
error = err,
model = mdl)
}
}
#' Generate prediction from an INLA output object
#'
#' `predict_inla_data()` generates a prediction vector from an [INLA::inla()]
#' output object, putting this prediction back into the data frame.
#'
#'
#' @inheritParams predict_inla
#' @param model INLA model object returned by [INLA::inla()] which contains
#' `summary.fitted.values`.
#'
#' @return A data frame.
predict_inla_data <- function(df,
model,
pred_col,
pred_upper_col,
pred_lower_col) {
fit <- model[["summary.fitted.values"]]
df[[pred_col]] <- fit[["mean"]]
df[[pred_lower_col]] <- fit[["0.025quant"]]
df[[pred_upper_col]] <- fit[["0.975quant"]]
df
}
#' Catch instability of INLA
#'
#' `map_model_behavior()` runs [INLA::inla()] until its successful. This is
#' important on linux machines where INLA can produce unstable results.
#'
#'
#' @inheritParams fit_inla_model
#'
#' @return A data frame.
map_model_behavior <- function(df, formula, control.predictor, ...){
success <- FALSE
iteration <- 0
while(!success){
iteration <- iteration + 1
tryCatch({
if(exists("mdl")) {
rm(list = "mdl")
}
mdl <- INLA::inla(formula = formula,
data = df,
control.predictor = control.predictor,
...)
if(exists("mdl")) {
success <- TRUE
}
},
error = function(e){
message(sprintf("Execution stopped due to the following error:\n\n%s", e))
},
finally = {
mdl
})
}
return(mdl)
}
#' Fit INLA model to data
#'
#' Used within `predict_inla()`, this function fits the model to the data
#' frame, working whether the model is being fit across the entire data frame or
#' being fit to each group individually. Data is filtered prior to fitting,
#' model(s) are fit, and then fitted values are generated on the original.
#'
#' If fitting models individually to each group, `mdl` will never be returned, as
#' as these are instead a large group of models. Otherwise, a list of `mdl` and `df`
#' is returned and used within `predict_inla()`.
#'
#' @inheritParams predict_inla
#' @inheritParams fit_general_model
#' @return List of `mdl` (fitted model) and `df` (data frame with fitted values
#' and confidence bounds generated from the model).
fit_inla_model <- function(df,
formula,
control.predictor,
...,
formula_vars,
test_col,
group_col,
group_models,
obs_filter,
sort_col,
sort_descending,
pred_col,
pred_upper_col,
pred_lower_col,
filter_na,
ret,
error_correct,
error_correct_cols,
shift_trend) {
# Filter data for modeling
if (!group_models) group_col <- NULL
df[["augury_unique_id"]] <- 1:nrow(df)
data <- get_model_data(df = df,
formula_vars = formula_vars,
test_col = test_col,
group_col = group_col,
filter_na = filter_na,
reduce_columns = FALSE)
if (group_models) {
# Split data frames
data <- dplyr::group_by(data, .data[[group_col]]) %>%
dplyr::group_split()
# Map modeling behavior
data <- purrr::map_dfr(data,
function(df){
obs_check <- dplyr::filter(df, eval(parse(text = obs_filter)))
if (nrow(obs_check) == 0) {
mdl <- map_model_behavior(df = df,
formula = formula,
control.predictor = control.predictor,
...
)
predict_inla_data(df,
mdl,
pred_col,
pred_upper_col,
pred_lower_col)
}else{
df
}
})
data <- augury_add_columns(data, c(pred_col, pred_upper_col, pred_lower_col))
mdl <- NULL # not returning all models together for grouped models
} else { # single model fitting
mdl <- map_model_behavior(df = data,
formula = formula,
control.predictor = control.predictor,
...)
# don't predict data if only returning model
if (ret == "mdl") {
data <- NULL
} else {
data <- predict_inla_data(data,
mdl,
pred_col,
pred_upper_col,
pred_lower_col)
}
}
# Merge predictions data with old df
# Ensures that response values dropped for testing are available for use
# in error calculations
if (is.null(data)) {
df <- NULL
} else {
df <- dplyr::left_join(dplyr::select(df, -dplyr::any_of(c(pred_col,
pred_lower_col,
pred_upper_col))),
dplyr::select(data, dplyr::all_of(c("augury_unique_id",
pred_col,
pred_lower_col,
pred_upper_col))),
by = "augury_unique_id") %>%
dplyr::select(-"augury_unique_id")
# Error correction if necessary
df <- error_correct_fn(df = df,
response = formula_vars[1],
group_col = group_col,
sort_col = sort_col,
sort_descending = sort_descending,
pred_col = pred_col,
pred_upper_col = pred_upper_col,
pred_lower_col = pred_lower_col,
test_col = test_col,
error_correct = error_correct,
error_correct_cols = error_correct_cols,
shift_trend = shift_trend)
}
list(df = df, mdl = mdl)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.