test_that("Removing missing values works", {
# drop_features
invisible(capture.output(n_features <- nrow(remove_missing_values(
brauer_2008_triple,
missing_val_method = "drop_features"
)$features)))
expect_equal(n_features, 460)
# drop_samples with no missing samples should behave like drop_features
invisible(capture.output(n_features <- nrow(remove_missing_values(
brauer_2008_triple,
missing_val_method = "drop_samples"
)$features)))
expect_equal(n_features, 460)
brauer_missing_samples <- brauer_2008_triple
brauer_missing_samples$measurements$expression[
brauer_missing_samples$measurements$sample %in% c("G0.05", "G0.1")
] <- NA
invisible(capture.output(filtered_brauer <- remove_missing_values(
brauer_missing_samples,
missing_val_method = "drop_samples"
)))
expect_equal(nrow(filtered_brauer$samples), 34)
expect_equal(nrow(filtered_brauer$measurements), 15674)
})
test_that("Matrices keys are reconstructed with appropriate classes", {
tomic_with_missing_values <- simple_triple
tomic_with_missing_values$measurements <- tomic_with_missing_values$measurements %>%
dplyr::slice(-c(1:5))
if (!("impute" %in% rownames(utils::installed.packages()))) {
cli::cli_alert("{.pkg impute} is not available for testing; imputation tests will be skipped")
} else{
imputed_tomic <- impute_missing_values(tomic_with_missing_values)
expect_s3_class(imputed_tomic, "triple_omic")
}
})
test_that("Sample mahalanobis distances are calculated", {
pc_distances <- calculate_sample_mahalanobis_distances(brauer_2008_tidy)
expect_snapshot(pc_distances)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.