OncoSigNB <- function (training_set,testing_set,the_bins,correlated_features){
message("\tBinning features based on holdout set\n")
the_bins_info=NaiveBayesBin(training_set,the_bins)
testing_set=computeLRsgivenBins(testing_set,the_bins,the_bins_info)
#Get the maximum of correlated features if they were passed
if (len(correlated_features)>0){
mass_spec_features=correlated_features
the_mass_spec_features=testing_set[mass_spec_features]
#print(the_mass_spec_features)
message("\tCorrecting for correlated features \n")
#message("test")
ms_max=getMaxLR(the_mass_spec_features)
testing_set[mass_spec_features] <- 1
testing_set$MS_max=ms_max
}
message("\tExtracting predicted LR_posterior holdout set\n")
the_results=unlist(getFinalLR(testing_set))
names(the_results)=testing_set$V1
return(the_results)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.