View source: R/analysisFunctions.R
1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | runNaiveBayesClassifier()
## The function is currently defined as
function ()
{
df_1 = read.delim("Input_data_files/Naive_Bayes_evidences_set_1.txt",
header = TRUE)
df_2 = read.delim("Input_data_files/Naive_Bayes_evidences_set_2.txt",
header = TRUE)
the_bins = list(c(0, 40, 200, 1200), c(0, 0.1), c(-2, -0.15,
-0.02, 0.0925), c(1, 2, 6), c(0, 0.25), c(1, 3, 20),
c(1, 4, 20), c(1, 4, 20), c(0, 1e-04, 0.9999), c(0, 0.01,
0.05))
correlated_features = grep("MS_", colnames(df_1), value = TRUE)
message("Calculating LR_posterior for fold two holdout set\n")
the_results_set_1 = OncoSigNB(df_1, df_2, the_bins, correlated_features)
message("Calculating LR_posterior for fold one holdout set\n")
the_results_set_2 = OncoSigNB(df_2, df_1, the_bins, correlated_features)
the_results_set_2_rank = cbind(the_results_set_2, rank(-the_results_set_2))
the_results_set_1_rank = cbind(the_results_set_1, rank(-the_results_set_1))
temp = rbind(the_results_set_1_rank, the_results_set_2_rank)
temp = as.data.frame(temp)
colnames(temp) = c("LR_post", "Rank")
cross_validated_predictions = temp[order(temp$Rank), ]
return(cross_validated_predictions)
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.