dpareto_fsa: Fisher Scoring algorithm (FSA) for estimation of discrete...

Description Usage Arguments Details Value References Examples

View source: R/discrete_pareto.R

Description

This function computes MLE of discrete Pareto distribution using the FSA algorithm.

Usage

1
2
3
4
5
6
7
8
9
dpareto_fsa(
  N,
  delta = 1,
  p = NULL,
  lambda = NULL,
  maxiter = 20,
  tol = 1e-08,
  verb = FALSE
)

Arguments

N

vector of random sample from discrete Pareto distribution

delta

shape parameter which must be numeric greater than or equal to 0

p

numeric parameter between 0 and 1

lambda

learning parameter between 0 and 1

maxiter

maximum number of iterations

tol

tolerance value

verb

If TRUE, estimates are printed during each iteration.

Details

Takes initial guess for the parameters in discrete Pareto and the algorithm will estimate the MLE.

Value

list containg parameter estimates, Deviance and data frame of iteration

References

Amponsah, C. K., Kozubowski, T. J. and Panorska (2019). A computational approach to estimation of discrete Pareto parameters. Inprint.

Examples

1
2
3
N<-rdpareto(500, delta=0.2,p=0.6)
fit<-dpareto_em(N,maxiter = 1000)
fit$par

camponsah/BivMixDist documentation built on Nov. 15, 2021, 3:11 a.m.