Description Usage Arguments Details Value References Examples
View source: R/discrete_pareto.R
This function computes MLE of discrete Pareto distribution using the FSA algorithm.
1 2 3 4 5 6 7 8 9 | dpareto_fsa(
N,
delta = 1,
p = NULL,
lambda = NULL,
maxiter = 20,
tol = 1e-08,
verb = FALSE
)
|
N |
vector of random sample from discrete Pareto distribution |
delta |
shape parameter which must be numeric greater than or equal to 0 |
p |
numeric parameter between 0 and 1 |
lambda |
learning parameter between 0 and 1 |
maxiter |
maximum number of iterations |
tol |
tolerance value |
verb |
If TRUE, estimates are printed during each iteration. |
Takes initial guess for the parameters in discrete Pareto and the algorithm will estimate the MLE.
list containg parameter estimates, Deviance and data frame of iteration
Amponsah, C. K., Kozubowski, T. J. and Panorska (2019). A computational approach to estimation of discrete Pareto parameters. Inprint.
1 2 3 | N<-rdpareto(500, delta=0.2,p=0.6)
fit<-dpareto_em(N,maxiter = 1000)
fit$par
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.