dmgeo: The multivariate geometric distribution (MGEO)

Description Usage Arguments Details Value References Examples

View source: R/mgeo_distribution.R

Description

Probability mass function for multivariate geometric distribution with parameters $p_1,...,p_d$ in (0,1)$ and -1<θ < \dfrac{1-\min(p_1,...,p_d)}{1+\min(p_1,...,p_d)}.

Usage

1
dmgeo(data, theta, prob, log.p = FALSE)

Arguments

data

is a data frame MGEO model.

theta

numeric parameter which must be greater than -1 but less than (1-min(p))/(1+min(p)).

prob

vector of parameters between 0 and 1.

log.p

logical; if TRUE, probabilities p are given as log(p).

Details

dmgeo is the probability mass function.

Value

vector of probabilities.

References

Kozubowski, T.J., & Panorska, A.K. (2005). A Mixed bivariate distribution with exponential and geometric marginals. Journal of Statistical Planning and Inference, 134, 501-520. https://doi.org/10.1016/j.jspi.2004.04.010

Examples

1
2
3
data<-rmgeo(n=20, theta = 2, prob = c(0.6, 0.1))
den<-dmgeo(data, theta=2, prob = c(0.6, 0.1))
den

camponsah/BivMixDist documentation built on Nov. 15, 2021, 3:11 a.m.