View source: R/categorize_cell_lines.R
categorize_cell_lines | R Documentation |
Categorize cell lines by the level of similarity to k-nearest tumors
categorize_cell_lines( num_tumors_for_comparison = 10, dist_mat, cell_line_ids, tumor_ids, trim_cell_line_names = FALSE )
num_tumors_for_comparison |
number of tumors used in a k-nearest neighbor comparison (DEFAULT: 10) |
dist_mat |
a matrix of pairwise weighted distances between all cell lines and tumors |
cell_line_ids |
IDs/names of cell lines |
tumor_ids |
IDs of tumors |
trim_cell_line_names |
a boolean whether to trim the the cell lines; this is optional and used for long cell line names in CCLE format (i.e. CELLLINE_TISSUE); (DEFAULT: FALSE) |
a list with the following items:
mean_similarity_cell_line_to_k_nearest_tumors: the mean similarity of each cell line to the k-nearest tumors
mean_similarity_tumor_to_k_nearest_tumors: the mean similarity of each tumor sample to the k-nearest tumors
categorization: a 2-column data.frame with the cell line categorizations: Sample_ID and Category; Category values can be: "Great", "Good", "Moderately Good", "Poor", "Outliers"
Rileen Sinha (rileen@gmail.com), Augustin Luna (aluna@jimmy.harvard.edu)
# Generated using: tumorcomparer::run_comparison() comparison_result <- readRDS(system.file("test_output", "ov_comparison_result.rds", package="tumorcomparer")) categorization_list <- categorize_cell_lines( num_tumors_for_comparison=length(comparison_result$tumor_ids)-1, dist_mat=comparison_result$dist_mat, cell_line_ids=comparison_result$cell_line_ids, tumor_ids=comparison_result$tumor_ids, trim_cell_line_names=FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.