View source: R/mobster_bootstrap.R
mobster_bootstrap | R Documentation |
Parametric and non-parametric implementation of
bootstrap estimates for MOBSTER fits. This computation is parallel
and uses ?easypar
.
mobster_bootstrap(
x,
n.resamples = 100,
bootstrap = "nonparametric",
cores.ratio = 0.8,
cache = NULL,
save_data = NULL,
...
)
x |
An object of class |
n.resamples |
Number of boostrap resamples. |
bootstrap |
Type of boostrap: |
cores.ratio |
Ratio of cores to use for the parallel; see |
cache |
Cache for the computation; see |
... |
fit parameters for |
Data from the fits, resamples and a plottable figure.
# Random small dataset
dataset = random_dataset(N = 200, seed = 123, Beta_variance_scaling = 100)
x = mobster_fit(dataset$data, auto_setup = 'FAST')
# Just 5 resamples of a nonparametric bootstrap run, disabling the parallel engine
options(easypar.parallel = FALSE)
boot_results = mobster_bootstrap(x$best, n.resamples = 5, auto_setup = 'FAST')
# The resample data is available in a list
print(boot_results$resamples[[1]])
# The best fits are returned
print(boot_results$fits)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.