R/svymisc.R

Defines functions wR svymultinom svyrq svyrqss svynb svytrch svycrch svyclm

Documented in svyclm svycrch svymultinom svynb svyrq svyrqss svytrch

#' svrepmisc: Miscellaneous Functions for Replicate Weights
#'
#' Wrapper functions for Complex Surveys using replicate weights.
#' Takes advantage of \code{\link[survey]{withReplicates}}.
#' @import survey
#' @importFrom stats coef
#' @importFrom stats printCoefmat
#' @importFrom stats pt
#' @docType package
#' @name svrepmisc
#'
NULL

# helper function
wR <- function(FUN, formula, design, subset, ..., scale.weights=FALSE) {
  # stolen from Lumley
  # surveyrep.R line 1311
  if (!missing(subset)) {
  subset <- substitute(subset)
  subset <- eval(subset, design$variables, parent.frame())
  if (!is.null(subset)) {
    design <- design[subset, ]
  }
  }

  est <- survey::withReplicates(design,
                        function(w, data) {
                          environment(formula) <- environment()
                          vals <- stats::coef(FUN(formula=formula,data=data,weights=w,...))
                          if (is.matrix(vals)) {
                            vals <- mat2vec(vals)
                          }
                          return(vals)
                        }, scale.weights=scale.weights)

  attr(est, "statistic") <- "Coefficient"
  class(est) <- c("svrepstatmisc",class(est))
  # from Lumley surveyrep.R line 1404
  # This is possibly wrong
  df.residual <- degf(design)+1-length(est)
  attr(est, "df.residual") <- df.residual
  if(df.residual <= 0)
    warning(paste0(
      "The number of degrees of freedom of your replicate weights design\n",
      "is inferior to the number of estimates in your model (", length(est), ").\n",
      "It will not be possible to compute p-values using t distribution.\n",
      "You should consider increasing the number of replicates."
    ))
  return(est)

}

#' Wrapper for Multinomial Logistic Regression for Replicate Weights
#'
#' Uses \code{\link[survey]{withReplicates}} and \code{\link[nnet]{multinom}} to generate
#' coefficients, and standards errors for multinomial logistic regressions
#' using replicate weights
#'
#' @note Output is consistent with SAS's proc surveylogistic's multinomial
#' survey output
#'
#' @export
#' @seealso \code{\link[survey]{withReplicates}} \code{\link[nnet]{multinom}}
#' @param formula Model formula
#' @param design Survey design from \code{\link[survey]{svrepdesign}}
#' @param subset Expression to select a subpopulation
#' @param ... Other arugments passed to \code{\link[nnet]{multinom}}
#' @param scale.weights Indicate whether to rescale weights (defaults to false)
#' @importFrom nnet multinom
#' @references Lumley, Thomas. Complex Surveys: A Guide to Analisys Using R.
#'  Hoboken, NJ: Wiley, 2010. Print.


svymultinom <- function(formula, design, subset, ..., scale.weights=FALSE) {
  wR(nnet::multinom,formula,design,subset,..., scale.weights=scale.weights)

}

#' Wrapper for Quantile Regression
#'
#' Wrapper for \code{\link[quantreg]{rq}} and \code{\link[quantreg]{rqss}} for replicate weights
#'
#' @seealso \code{\link[survey]{withReplicates}} \code{\link[quantreg]{rq}} \code{\link[quantreg]{rqss}}
#' @param formula Model formula
#' @param design Survey design from \code{\link[survey]{svrepdesign}}
#' @param subset Expression to select a subpopulation
#' @param ... Other arugments passed to \code{\link[quantreg]{rq}} or \code{\link[quantreg]{rqss}}
#' @param scale.weights Indicate whether to rescale weights (defaults to false)
#' @importFrom quantreg rq
#' @importFrom quantreg rqss
#' @export
#' @references Lumley, Thomas. Complex Surveys: A Guide to Analisys Using R.
#'  Hoboken, NJ: Wiley, 2010. Print.

svyrq <- function(formula, design, subset, ..., scale.weights=FALSE) {
  wR(quantreg::rq, formula, design, subset, ..., scale.weights=scale.weights)

}

#' @export
#' @rdname svyrq
svyrqss <- function(formula, design, subset, ..., scale.weights=FALSE) {
  wR(quantreg::rqss,formula,design,subset,...,scale.weights = scale.weights)

}

#' Wrapper for Negative Binomial
#'
#' Wrapper for \code{\link[MASS]{glm.nb}} for replicate weights
#'
#' @seealso \code{\link[survey]{withReplicates}} \code{\link[MASS]{glm.nb}}
#' @param formula Model formula
#' @param design Survey design from \code{\link[survey]{svrepdesign}}
#' @param subset Expression to select a subpopulation
#' @param ... Other arugments passed to \code{\link[MASS]{glm.nb}}
#' @param scale.weights Indicate whether to rescale weights (defaults to false)
#' @importFrom MASS glm.nb
#' @export
#' @references Lumley, Thomas. Complex Surveys: A Guide to Analisys Using R.
#'  Hoboken, NJ: Wiley, 2010. Print.

svynb <- function(formula, design, subset, ..., scale.weights=FALSE) {
  wR(MASS::glm.nb, formula, design, subset, ..., scale.weights=scale.weights)

}

#' Wrapper for Censored and Truncated Response Model
#'
#' Wrapper for \code{\link[crch]{trch}} and \code{\link[crch]{crch}} for replicate weights
#'
#' @importFrom crch trch
#' @importFrom crch crch
#' @param formula Model formula
#' @param design Survey design from \code{\link[survey]{svrepdesign}}
#' @param subset Expression to select a subpopulation
#' @param ... Other arugments passed to \code{\link[crch]{trch}} or \code{\link[crch]{crch}}
#' @param scale.weights Indicate whether to rescale weights (defaults to false)
#' @export
#' @seealso \code{\link[survey]{withReplicates}} \code{\link[crch]{trch}} \code{\link[crch]{crch}}
#' @references Lumley, Thomas. Complex Surveys: A Guide to Analisys Using R.
#'  Hoboken, NJ: Wiley, 2010. Print.

svytrch <- function(formula, design, subset, ..., scale.weights=FALSE) {
  wR(crch::trch, formula, design, subset, ..., scale.weights=scale.weights)

}

#' @rdname svytrch
#' @export
svycrch <- function(formula, design, subset, ..., scale.weights=FALSE) {
  wR(crch::crch, formula, design, subset, ..., scale.weights=scale.weights)

}

#' Wrapper for Ordinal Logistic Regression (cumulative link model) for Replicate Weights
#'
#' Uses \code{\link[survey]{withReplicates}} and \code{\link[ordinal]{clm}} to generate
#' coefficients, and standards errors for ordinal logistic regressions
#' using replicate weights
#'
#' @export
#' @seealso \code{\link[survey]{withReplicates}} \code{\link[ordinal]{clm}}
#' @param formula Model formula
#' @param design Survey design from \code{\link[survey]{svrepdesign}}
#' @param subset Expression to select a subpopulation
#' @param ... Other arugments passed to \code{\link[ordinal]{clm}}
#' @param scale.weights Indicate whether to rescale weights (defaults to false)
#' @importFrom ordinal clm
#' @references Lumley, Thomas. Complex Surveys: A Guide to Analisys Using R.
#'  Hoboken, NJ: Wiley, 2010. Print.
#' @examples
#' library(survey)
#' data(api)
#' d <- svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)
#' dwr <- as.svrepdesign(d, type = "bootstrap", replicates = 100)
#' mod <- svyclm(stype ~ ell + mobility, dwr)
#' mod
#' confint(mod)
#' library(broom)
#' tidy(mod)
#' tidy(mod, exponentiate = TRUE, conf.int = TRUE)

svyclm <- function(formula, design, subset, ..., scale.weights = FALSE) {
  wR(ordinal::clm, formula, design, subset, ..., scale.weights = scale.weights)
}
carlganz/svrepmisc documentation built on July 28, 2019, 2:53 p.m.