#' Select race
#'
#' @param numapp path to the NUMAPP files
#' @return data.frame with last race
#' @keywords internal
#' @import data.table
#' @export
select_race_last <- function(data = numapp) {
data <- data[, c("ssn", "race", "cycle_date", "year_cycle", "month_cycle"), with=FALSE]
## Remove applications with 0 (no information) for sex
applications <- nrow(data)
data[race==0] <- NA
data[race == 9, race := NA] ## this also denotes missing?
data <- na.omit(data, cols="race")
removed_na <- applications - nrow(data)
cat(removed_na, "removed with 0 value (no information) or NA for race", "\n")
# Set missing values equal to 0. These will be selected last according to our selection process.
for (col in c("year_cycle", "month_cycle")) data[is.na(get(col)), (col) := 0]
# Maybe should convert this to century months in the future?
data[,"cycle_year_month" := year_cycle + (month_cycle/12)]
## Number of different sexes per SSN
data[, number_of_distinct_races := length(unique(race)), by = ssn]
## Create flag (0 or 1 dichotomous var) for more than one first name.
data[, race_multiple_flag := (ifelse(number_of_distinct_races > 1, 1, 0))]
cat(removed_na, "Finished creating flag for multiple first names", "\n")
## Select most recent race
data <- data[data[, .I[which.max(cycle_year_month)], by=ssn]$V1]
## Recode originally missing years back to NA.
data[year_cycle == 0, year_cycle := NA]
data[month_cycle == 0, month_cycle := NA]
data[,race_last := race]
## Recode originally missing years back to NA.
data[,"race_last_cyear" := year_cycle]
data[,"race_last_cmonth" := month_cycle]
data.df <- data[, c("ssn", "race_last", "race_last_cyear", "race_last_cmonth"), with=FALSE]
return(data.df)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.