initFunc <- function(initList, priors, xTrain){
d <- ncol(xTrain)
n <- nrow(xTrain)
initReturn <- vector("list")
initReturn$mu <- rnorm(1, 0, 1)
initReturn$w <- priors$w$a + rbeta(1, priors$w$alpha, priors$w$beta)*(priors$w$b - priors$w$a)
initReturn$rhoG <- rbeta(d, priors$rhoG$alpha, priors$rhoG$beta)
initReturn$rhoL <- initReturn$rhoG * rbeta(d, priors$rhoL$alpha, priors$rhoL$beta)
initReturn$sig2eps <- max(.Machine$double.eps,
rgamma(1, shape = priors$sig2eps$alpha,
scale = priors$sig2eps$beta))
initReturn$muV <- rnorm(1, priors$muV$mu, sqrt(priors$muV$sig2))
initReturn$rhoV <- rbeta(d, priors$rhoV$alpha, priors$rhoV$beta)
initReturn$sig2K <- 1/rgamma(1, priors$sig2K$alpha, scale = priors$sig2K$beta)
K <- initReturn$sig2K * getCorMat(xTrain,initReturn$rhoV) + 1e-10*diag(n)
initReturn$V <- exp(MASS::mvrnorm(1, initReturn$muV*rep(1, n), K))
return(initReturn)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.