| cv_edgenet | R Documentation | 
Finds the optimal regulariztion parameters using cross-validation for edgenet. We use the BOBYQA algorithm to find the optimial regularization parameters in a cross-validation framework.
cv_edgenet(
  X,
  Y,
  G.X = NULL,
  G.Y = NULL,
  lambda = NA_real_,
  psigx = NA_real_,
  psigy = NA_real_,
  thresh = 1e-05,
  maxit = 1e+05,
  learning.rate = 0.01,
  family = gaussian,
  optim.thresh = 0.01,
  optim.maxit = 100,
  lambda_range = seq(0, 2, length.out = 10),
  psigx_range = seq(0, 500, length.out = 10),
  psigy_range = seq(0, 500, length.out = 10),
  nfolds = 2,
  cv_method = c("grid_search", "grid_search_lsf", "optim"),
  tempdir = "."
)
## S4 method for signature 'matrix,numeric'
cv_edgenet(
  X,
  Y,
  G.X = NULL,
  G.Y = NULL,
  lambda = NA_real_,
  psigx = NA_real_,
  psigy = NA_real_,
  thresh = 1e-05,
  maxit = 1e+05,
  learning.rate = 0.01,
  family = gaussian,
  optim.thresh = 0.01,
  optim.maxit = 100,
  lambda_range = seq(0, 2, length.out = 10),
  psigx_range = seq(0, 500, length.out = 10),
  psigy_range = seq(0, 500, length.out = 10),
  nfolds = 2,
  cv_method = c("grid_search", "grid_search_lsf", "optim"),
  tempdir = "."
)
## S4 method for signature 'matrix,matrix'
cv_edgenet(
  X,
  Y,
  G.X = NULL,
  G.Y = NULL,
  lambda = NA_real_,
  psigx = NA_real_,
  psigy = NA_real_,
  thresh = 1e-05,
  maxit = 1e+05,
  learning.rate = 0.01,
  family = gaussian,
  optim.thresh = 0.01,
  optim.maxit = 100,
  lambda_range = seq(0, 2, length.out = 10),
  psigx_range = seq(0, 500, length.out = 10),
  psigy_range = seq(0, 500, length.out = 10),
  nfolds = 2,
  cv_method = c("grid_search", "grid_search_lsf", "optim"),
  tempdir = "."
)
| X | input matrix, of dimension ( | 
| Y | output matrix, of dimension ( | 
| G.X | non-negativ affinity matrix for  | 
| G.Y | non-negativ affinity matrix for  | 
| lambda | 
 | 
| psigx | 
 | 
| psigy | 
 | 
| thresh | 
 | 
| maxit | maximum number of iterations for the optimizer
( | 
| learning.rate | step size for Adam optimizer ( | 
| family | family of response, e.g. gaussian or binomial | 
| optim.thresh | 
 | 
| optim.maxit | the maximum number of iterations for the optimization
( | 
| lambda_range | range of lambda to use in CV grid. | 
| psigx_range | range of psigx to use in CV grid. | 
| psigy_range | range of psigy to use in CV grid. | 
| nfolds | the number of folds to be used - default is 10. | 
| cv_method | which cross-validation method to use. | 
| tempdir | where to store auxiliary files. | 
An object of class cv_edgenet
| parameters  | the estimated, optimal regularization parameters | 
| lambda  | optimal estimated value for regularization parameter lambda (or, if provided as argument, the value of the parameter) | 
| psigx  | optimal estimated value for regularization parameter psigx (or, if provided as argument, the value of the parameter) | 
| psigy  | optimal estimated value for regularization parameter psigy (or, if provided as argument, the value of the parameter) | 
| estimated.parameters  | names of parameters that were estimated | 
| family  | family used for estimated | 
| fit  |  an  | 
| call  | the call that produced the object | 
X <- matrix(rnorm(100 * 10), 100, 10)
b <- matrix(rnorm(100), 10)
G.X <- abs(rWishart(1, 10, diag(10))[, , 1])
G.Y <- abs(rWishart(1, 10, diag(10))[, , 1])
diag(G.X) <- diag(G.Y) <- 0
# estimate the parameters of a Gaussian model
Y <- X %*% b + matrix(rnorm(100 * 10), 100)
## dont use affinity matrices and estimate lambda
fit <- cv_edgenet(
  X = X,
  Y = Y,
  family = gaussian,
  maxit = 1,
  lambda_range = c(0, 1)
)
## only provide one matrix and estimate lambda
fit <- cv_edgenet(
  X = X,
  Y = Y,
  G.X = G.X,
  psigx = 1,
  family = gaussian,
  maxit = 1,
  lambda_range = c(0, 1)
)
## estimate only lambda with two matrices
fit <- cv_edgenet(
  X = X,
  Y = Y,
  G.X = G.X,
  G.Y,
  psigx = 1,
  psigy = 1,
  family = gaussian,
  maxit = 1,
  lambda_range = c(0, 1)
)
## estimate only psigx
fit <- cv_edgenet(
  X = X,
  Y = Y,
  G.X = G.X,
  G.Y,
  lambda = 1,
  psigy = 1,
  family = gaussian,
  maxit = 1,
  psigx_range = c(0, 1)
)
## estimate all parameters
fit <- cv_edgenet(
  X = X,
  Y = Y,
  G.X = G.X,
  G.Y,
  family = gaussian,
  maxit = 1,
  lambda_range = c(0, 1),
  psigx_range = c(0, 1),
  psigy_range = c(0, 1)
)
## if Y is vectorial, we cannot use an affinity matrix for Y
fit <- cv_edgenet(
  X = X,
  Y = Y[, 1],
  G.X = G.X,
  family = gaussian,
  maxit = 1,
  lambda_range = c(0, 1),
  psigx_range = c(0, 1),
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.