pareg | R Documentation |
Run model to compute pathway enrichments. Can model inter-pathway relations, cross-validation and much more.
pareg(
df_genes,
df_terms,
lasso_param = NA_real_,
network_param = NA_real_,
term_network = NULL,
cv = FALSE,
cv_cores = NULL,
family = beta,
response_column_name = "pvalue",
max_iterations = 1e+05,
lasso_param_range = seq(0, 2, length.out = 10),
network_param_range = seq(0, 500, length.out = 10),
log_level = NULL,
...
)
df_genes |
Dataframe storing gene names and DE p-values. |
df_terms |
Dataframe storing pathway database. |
lasso_param |
Lasso regularization parameter. |
network_param |
Network regularization parameter. |
term_network |
Term similarity network as adjacency matrix. |
cv |
Estimate best regularization parameters using cross-validation. |
cv_cores |
How many cores to use for CV parallelization. |
family |
Distribution family of response. |
response_column_name |
Which column of model dataframe to use as response. |
max_iterations |
How many iterations to maximally run optimizer for. |
lasso_param_range |
LASSO regularization parameter search space in grid search of CV. |
network_param_range |
Network regularization parameter search space in grid search of CV. |
log_level |
Control verbosity (logger::INFO, logger::DEBUG, ...). |
... |
Further arguments to pass to '(cv.)edgenet'. |
An object of class pareg
.
df_genes <- data.frame(
gene = paste("g", 1:20, sep = ""),
pvalue = c(
rbeta(10, .1, 1),
rbeta(10, 1, 1)
)
)
df_terms <- rbind(
data.frame(
term = "foo",
gene = paste("g", 1:10, sep = "")
),
data.frame(
term = "bar",
gene = paste("g", 11:20, sep = "")
)
)
pareg(df_genes, df_terms, max_iterations = 10)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.