#' Evaluates the mean square error loss function of a linear regression.
#'
#' @param beta a vector of size dimX, the value at which the loss is computed
#' (i.e. we predict Y using X'beta)
#' @param X an array of size n x Tmax x dimX containing the values of the covariates X
#' @param Y a matrix of size n x Tmax containing the values of the dependent variable Y
#'
#' @return the value of the mean squared error loss function of the linear regression at beta
#' @export
#'
# @examples
mean_squared_error <- function(beta, X, Y) {
# Force X as an array even if dimX = 1
if (length(dim(X)) == 2) {
X <- array(X, c(dim(X), 1))
}
k <- dim(X)[3]
# Compute X' * beta for each individual-period pair
index <- matrix(0, dim(X)[1], dim(X)[2])
for (i in 1:k) {
index <- X[,, i] * beta[i]
}
# Compute MSE on each row
mse <- sum((Y - index)^2, na.rm = TRUE)
return(mse)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.