## ----eval=FALSE---------------------------------------------------------------
# # 1.1) Load the package into R:
# library(immunarch)
#
# # 1.2a) To quickly test immunarch, load the test dataset:
# data(immdata)
#
# # 1.2b) To try immunarch on your own data, use the `repLoad` function on your data folder:
# immdata = repLoad("path/to/your/folder/with/repertoires")
## ----eval=FALSE---------------------------------------------------------------
# # 2.1) Find the number of shared clonotypes and visualise it:
# ov = repOverlap(immdata$data)
# vis(ov)
#
# # 2.2) Cluster samples by their similarity:
# ov.kmeans = repOverlapAnalysis(ov, .method = "mds+kmeans")
# vis(ov.kmeans)
## ----eval=FALSE---------------------------------------------------------------
# # 3.1) Compute V gene usage and and highlight gene differences in groups with different clinical status:
# gu = geneUsage(immdata$data)
# vis(gu, .by="Status", .meta=immdata$meta)
#
# # 3.2) Cluster samples by their V gene usage similarity:
# gu.clust = geneUsageAnalysis(gu, .method = "js+hclust")
# vis(gu.clust)
## ----eval=F-------------------------------------------------------------------
# # 4.1) Compare diversity of repertoires and visualise samples, grouped by both clinical status and sequencing Lane:
# div = repDiversity(immdata$data, .method = "chao1")
# vis(div, .by=c("Status", "Lane"), .meta=immdata$meta)
## ----eval=FALSE---------------------------------------------------------------
# # 5.1) Manipulate the visualisation of diversity estimates to make the plot publication-ready:
# div = repDiversity(immdata$data, .method = "chao1")
# div.plot = vis(div, .by=c("Status", "Lane"), .meta=immdata$meta)
# fixVis(div.plot)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.