Description Usage Arguments Value References See Also Examples
View source: R/Gaussian_Inference.r
Create an object of type "GaussianNIG", which represents the Gaussian and Normal-Inverse-Gamma (Gaussian-NIG) conjugate structure:
x \sim Gaussian(X beta,sigma^2)
sigma^2 \sim InvGamma(a,b)
beta \sim Gaussian(m,sigma^2 V)
Where X is a row vector, or a design matrix where each row is an obervation. InvGamma() is the Inverse-Gamma distribution, Gaussian() is the Gaussian distribution. See ?dInvGamma and dGaussian for the definitions of these distribution.
This object will be used as a place for recording and accumulating information in the related inference/sampling functions such as posterior(), posteriorDiscard(), MAP(), marginalLikelihood(), dPosteriorPredictive(), rPosteriorPredictive() and so on.
1 2 3 4 5  | GaussianNIG(
  objCopy = NULL,
  ENV = parent.frame(),
  gamma = list(m = 0, V = 1, a = 1, b = 1)
)
 | 
objCopy | 
 An object of type "GaussianNIG". If "objCopy" is not NULL, the function create a new "GaussianNIG" object by copying the content from objCopy, otherwise this new object will be created by using "ENV" and "gamma". Default NULL.  | 
ENV | 
 environment, specify in which environment the object will be created  | 
gamma | 
 list, a named list of NIG parameters, gamma=list(m,V,a,b). Where gamma$m is a numeric "location" parameter; gamma$V is a symmetric positive definite matrix representing the "scale" parameters; gamma$a and gamma$b are the "shape" and "scale" parameter of the Inverse Gamma distribution.  | 
An object of class "GaussianNIG".
Banerjee, Sudipto. "Bayesian Linear Model: Gory Details." Downloaded from http://www. biostat. umn. edu/~ph7440 (2008).
posterior.GaussianNIG,posteriorDiscard.GaussianNIG,MAP.GaussianNIG,MPE.GaussianNIG,marginalLikelihood.GaussianNIG,dPosteriorPredictive.GaussianNIG, rPosteriorPredictive.GaussianNIG ...
1 2 3 4 5 6 7 8  | X <- 1:20                               #generate some linear data
x <- rnorm(20)+ X*0.3                   #generate some linear data
obj <- GaussianNIG(gamma=list(m=0,V=1,a=1,b=0)) #create a GaussianNIG object
ss <- sufficientStatistics(obj = obj,X=X,x=x)   #the sufficient statistics of X and x
posterior(obj = obj,ss = ss)                    #add the infomation to the posterior
MAP(obj)                                        #get the MAP estimate of beta and sigma^2
## print the whole content, "invV" and "mVm" in the output are temporary variables.
obj
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.