## Changelog:
# CG 0.0.5 2023-04-19: allow for arguments model and use_model_values
# include if statements to check which arguments to use
# check if argument model is of admissible class
# CG 0.0.4 2023-02-28: change preamble for documentation
# MA 0.0.3 2022-02-07: Added Psi to @param
# CG 0.0.2 2022-01-13: changed structure of internal_list
# cleaned up code (documentation, 80 char per line)
# changed dot-case to snake-case
# MH 0.0.1 2021-11-22: chunked from interventional_moments() 0.0.2 2021-10-14
## Documentation
#' @title Calculate Interventional Mean
#' @description Calculate mean vector of the interventional distribution
#' (see, for example, Eqs. 6a, 12a, and 22a in Gische and Voelkle, 2022).
#' The arguments SI and IN (zero-one matrices) of the function are
#' described in detail in Definition 1 in Gische and Voelkle (2022).
#' @param C Numeric matrix of structural coefficients.
#' @param x Numeric vector of interventional levels.
#' @param SI Numeric selection matrix.
#' @param n Integer number of observed variables.
#' @param IN Numeric zero-one matrix.
#' @param model Object of class \code{causalSEM}.
#' @param use_model_values Logical value indicating if model values should be
#' used (TRUE) in calculation. Default: FALSE.
#' @param verbose Integer number describing the verbosity of console output.
#' Admissible values: 0: no output (default), 1: user messages,
#' 2: debugging-relevant messages.
#' @return The numeric mean vector of the interventional distribution.
#' @references Gische, C., Voelkle, M.C. (2022) Beyond the Mean: A Flexible
#' Framework for Studying Causal Effects Using Linear Models. Psychometrika 87,
#' 868–901. https://doi.org/10.1007/s11336-021-09811-z
## Function definition
calculate_interventional_means <- function(C = NULL,
x = NULL,
SI = NULL,
n = NULL,
IN = NULL,
verbose = NULL,
model = NULL,
use_model_values = FALSE){
# function name
fun.name <- "calculate_interventional_means"
# function version
fun.version <- "0.0.5 2023-04-19"
# function name+version
fun.name.version <- paste0( fun.name, " (", fun.version, ")" )
# if model is provided, check if it of admissible class
if ( !is.null(model)){
# get class of model object
model_class <- class(model)
# set supported classes of model objects
supported_model_classes <- c( "causalSEM" )
# check if argument model is supported
if(!any(model_class %in% supported_model_classes)) stop(
paste0(
fun.name.version, ": model of class ", model_class,
" not supported. Supported fit objects are: ",
paste(supported_model_classes, collapse = ", ")
)
)
verbose <- model$control$verbose
}
if (!is.null(model) && use_model_values == TRUE){
# get/define terms
C <- model$info_model$C$values
# interventional level
x <- model$info_interventions$intervention_levels
# selection matrix 1_I
SI <- model$constant_matrices$select_intervention
# number of observed variables
n <- model$info_model$n_ov
# I_N matrix
IN <- model$constant_matrices$eliminate_intervention
} else if (use_model_values == FALSE) {
# TODO: include argument check
verbose <- handle_verbose_argument(verbose)
# get/define terms
C <- C
# interventional level
x <- x
# selection matrix 1_I
SI <- SI
# number of observed variables
n <- n
# I_N matrix
IN <- IN
}
# console output
if( verbose >= 2 ) cat( paste0( "start of function ", fun.name.version, " ",
Sys.time(), "\n" ) )
# identity matrix
In <- diag( n )
# calculate interventional means, Eq. 6a in Gische and Voelkle (2022)
E <- solve( In - IN %*% C ) %*% SI %*% x
# console output
if( verbose >= 2 ) cat( paste0( " end of function ", fun.name.version, " ",
Sys.time(), "\n" ) )
# return internal list
return( E )
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.