## Changelog:
# CG 0.0.5 2023-02-28: remove part where the jacobian is computed and
# and define it as as standalone function
# fill_in_jacobian_interventional_means
# CG 0.0.4 2023-02-28: check if argument is of class causalSEM
# MH 0.0.3 2022-03-17: removed "seealso", solves NOTE in package checking
# CG 0.0.2 2022-01-13: changed structure of internal_list
# cleaned up code (documentation, 80 char per line)
# changed dot-case to snake-case
# MA 0.0.1 2021-11-22: initial programming
## Documentation
#' @title Fill in Asymptotics for the Mean to List
#' @description Fills in the Jacobian, the asymptotic
#' covariance matrix, the asymptotic standard errors, and approximate z-values
#' of the mean vector of the interventional distribution into the internal list.
#' See, for example, Theorem 9 and Corollaries 10 and 11 in Gische and Voelkle
#' (2022).
#' @param internal_list A list with various information extracted from the
#' model.
#' @return The inputted list with several slots
#' in \code{..$interventional_distribution$means} filled in.\cr
#' \tabular{lll}{
#' \tab \code{..$jacobian} \tab The Jacobian matrix. \cr
#' \tab \code{..$acov} \tab The asymptotic covariance matrix. \cr
#' \tab \code{..$ase} \tab Asymptotic standard errors. \cr
#' \tab \code{..$z_value} \tab Approximate z-values.}
#' @references Gische, C., Voelkle, M.C. (2022) Beyond the Mean: A Flexible
#' Framework for Studying Causal Effects Using Linear Models. Psychometrika 87,
#' 868–901. https://doi.org/10.1007/s11336-021-09811-z
## Function definition
fill_in_asymptotics_interventional_means <- function(internal_list = NULL){
# function name
fun_name <- "fill_in_asymptotics_interventional_means"
# function version
fun_version <- "0.0.4 2023-02-28"
# function name+version
fun_name_version <- paste0(fun_name, " (", fun_version, ")")
# CG 0.0.3 2023-02-28: check if argument is of class causalSEM
# check function arguments
## get class of model object
model_class <- class(internal_list)
## set supported classes of model objects
supported_model_classes <- c( "causalSEM" )
## check if argument model is supported
if(!any(model_class %in% supported_model_classes)) stop(
paste0(
fun.name.version, ": model of class ", model_class,
" not supported. Supported fit objects are: ",
paste(supported_model_classes, collapse = ", ")
)
)
# get verbose argument
verbose <- internal_list$control$verbose
# console output
if(verbose >= 2) cat(paste0( "start of function ", fun_name_version, " ",
Sys.time(), "\n" ))
# calculate asymptotic standard errors
ase <- calculate_ase_interventional_means(model = internal_list,
use_model_values = TRUE)
# fill in slots of ...$interventional_distribution$means
internal_list$interventional_distribution$means$acov <- ase$acov_gamma_1
internal_list$interventional_distribution$means$ase <- ase$ase_gamma_1
internal_list$interventional_distribution$means$z_values <- ase$z_gamma_1
# console output
if(verbose >= 2) cat( paste0(" end of function ", fun_name_version, " ",
Sys.time(), "\n" ))
# return internal list
internal_list
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.