## code to prepare `api_coveragedb` dataset goes here
library(covidAgeData)
library(lubridate)
library(dplyr)
library(readr)
inputDB <- download_covid("inputDB", progress = FALSE, tmp = TRUE)
raw_api_coveragedb <-
inputDB %>%
subset_covid(Country = "USA") %>%
as_tibble()
api_coveragedb_data <-
raw_api_coveragedb %>%
as_tibble() %>%
mutate(Date = dmy(Date)) %>%
filter(
Measure %in% c("Cases", "Vaccination1", "Vaccination2", "Vaccination3"),
between(Date, ymd("2020-01-01"), ymd("2021-12-31")),
Region %in% c("California", "New York State", "Utah"),
Metric == "Count",
AgeInt == 10,
Sex %in% c("m", "f")
)
## library(ggplot2)
## api_coveragedb %>%
## ggplot(aes(Date, Value, group = Age, color = Age)) +
## geom_line() +
## facet_wrap(Sex ~ Region) +
## theme_bw()
## code to prepare `api_amazon` dataset goes here
library(httr2)
library(tibble)
library(jsonlite)
library(dplyr)
library(glue)
library(tidyr)
library(mosaicData)
seed <- "21311412"
books <- glue("https://fakerapi.it/api/v1/books?_quantity=5&_seed={seed}")
texts <- glue("https://fakerapi.it/api/v1/texts?_quantity=5&_characters=100&_seed={seed}")
user <- glue("https://fakerapi.it/api/v1/users?_quantity=100&_seed={seed}")
products <- glue("https://fakerapi.it/api/v1/products?_quantity=100&_seed={seed}")
# endpoint args: author, genre
res <- req_perform(request(books))
books_db <-
res %>%
resp_body_json() %>%
.[["data"]] %>%
lapply(as_tibble) %>%
bind_rows()
# endpoint args: author title
res <- req_perform(request(texts))
text_db <-
res %>%
resp_body_json() %>%
.[["data"]] %>%
lapply(as_tibble) %>%
bind_rows()
countries <-
Countries %>%
drop_na() %>%
filter(gapminder != "") %>%
pull(gapminder) %>%
unique()
# endpoint args country user_id
set.seed(1231)
res <- req_perform(request(user))
user_db <-
res %>%
resp_body_json() %>%
.[["data"]] %>%
lapply(as_tibble) %>%
bind_rows() %>%
mutate(countries = sample(countries, nrow(.), replace = TRUE))
distinct_countries <-
user_db %>%
distinct(countries)
# endpoint args product_id user_id tags
res <- req_perform(request(products))
products_user_db <-
res %>%
resp_body_string() %>%
fromJSON() %>%
.[["data"]] %>%
as_tibble() %>%
select(-categories)
# endpoint user_id
res <- req_perform(request(products))
products_db <- products_user_db %>% select(id, name, description)
set.seed(1231)
id_books <- sample(1:1000, nrow(books_db))
books_db <-
books_db %>%
rename(id_book = id) %>%
mutate(id_book = id_books)
text_db$title <- books_db$title
text_db$author <- books_db$author
text_db$genre <- NULL
text_db <-
text_db %>%
mutate(
id_books = id_books
) %>%
relocate(id_books, everything())
text_db
set.seed(1231)
user_db <-
user_db %>%
select(countries, macAddress, ip) %>%
mutate(user_id = sample(1:1000, nrow(.))) %>%
relocate(user_id, everything())
set.seed(1231)
products_user_db <-
products_user_db %>%
mutate(user_id = sample(user_db$user_id, nrow(.), replace = TRUE)) %>%
rename(product_id = id) %>%
relocate(product_id, user_id, everything()) %>%
select(-name, -description)
books_db <- bind_rows(lapply(1:5, function(x) books_db))
set.seed(1231)
books_db$user_id <- sample(user_db$user_id, nrow(books_db))
books_db <- books_db %>% arrange(title, author)
distinct_author <-
books_db %>%
distinct(author, genre)
bicing <- read_csv("https://opendata-ajuntament.barcelona.cat/data/dataset/fa94d2f3-3428-47b8-9f2b-f1e4423e745a/resource/e097e9ed-0e1f-4a87-94c3-1a589b791aeb/download")
bicing <-
bicing %>%
distinct(type, latitude, longitude, streetName, streetNumber, slots) %>%
slice(1:20) %>%
as.data.frame()
###### Save all datasets #######
usethis::use_data(
bicing,
distinct_countries,
distinct_author,
books_db,
text_db,
user_db,
products_user_db,
products_db,
api_coveragedb_data,
overwrite = TRUE,
internal = TRUE
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.