five.Tw.1<-function(X,Y,kappa,theta1,theta2){
n=length(X[2,]) # number of dimentions/attributes of X
if(length(kappa)==1){
kappa[2]=kappa[1]
}
###calcmedv
A=X[seq(along=Y)[Y==1],] # selecting class +1
B=X[seq(along=Y)[Y==-1],] #selecting class -1
m1=nrow(A) # number of +1 class
m2=nrow(B)
## Statistics Measures
mu=rbind(colMeans(A),colMeans(B))
sigma=list(cov(A)+1e-7*diag(x=1,nrow = n , ncol = n),
cov(B)+1e-7*diag(x=1,nrow = n , ncol = n))
Mchol=list(t(chol(sigma[[1]])),t(chol(sigma[[2]]))) ##Sr but seem to be the same
#######
e1=cbind(rep(1,m1))
e2=cbind(rep(1,m2))
H= cbind(A,e1)
G= cbind(B,e2)
HH=t(H)%*%H
HH = HH + theta1*diag(dim(HH)[2]) #regularization
R1=chol(HH)
rm(HH)
GG=t(G)%*%G
GG=GG + theta2*diag(dim(GG)[2])#%regularization
R2=chol(GG)
rm(GG)
bb=-cbind(c(1,1,numeric(n+1)))
## First Problem
## Building the 1st constraint
At1=rbind(c(1,numeric(n+1)),cbind(0,R1))
c1=numeric(n+2)
## Building the 2nd constraint
At2=matrix(0,nrow=n+1,ncol=n+2)
At2[1,]=c( 0,- mu[2,], -1)
At2[2:(n+1),2:(n+1)]=kappa[2]*t(Mchol[[2]])
c2=c(-1,numeric(n+1))
At=-rbind(At1,At2)
ct=rbind(c1,c2)
K.q=c(n+2,n+1)
## Solve the SOC-problem with SCS
cone <- list( q = K.q)
scs <- scs(At, ct, -bb , cone)
w1=cbind(scs$x[2:(n+1)])
b1=scs$x[(n+2)]
rm(At,At1, At2)
## Second Problem
## Building the 1st constraint
At1=rbind(c(1,numeric(n+1)),cbind(0,R2))
## Building the 2nd constraint
At2=matrix(0,nrow=n+1,ncol=n+2)
At2[1,]=c( 0, mu[1,], 1)
At2[2:(n+1),2:(n+1)]=kappa[1]*t(Mchol[[1]])
At=-rbind(At1,At2)
#ct=rbind(c1,c2)
## Solve the SOC-problem with SCS
cone <- list( q = K.q )
scs <- scs(At, ct, -bb , cone)
rm(At,At1, At2, c1, c2)
w2=cbind(scs$x[2:(n+1)])
b2=scs$x[(n+2)]
return(list(w1=w1,b1=b1,w2=w2,b2=b2))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.