#' Model RTS
#'
#' This function makes predictions with the RTS model.
#' @param data The study data frame. No default.
#' @export
#'
ModelRTS <- function(data)
{
## Define model_variables
model_variables <- c("sbp",
"gcs",
"rr")
## Define cut points
cut_points <- list(sbp = c(0, 1, 49, 75, 89, Inf),
gcs = c(3,4,5,8,12,Inf),
rr = c(0,1,5,9,29, Inf))
## Define scores of variabels
scores <- list(sbp = c("0", "1", "2", "3", "4"),
gcs = c("0", "1", "2", "3", "4"),
rr = c("0", "1", "2", "4", "3"))
## Define RTS coefficients
RTS_coefficients <- c(0.9368,
0.7326,
0.2908)
## Use bin.model.variables to group model variables into scores
binned_variables <- lapply(setNames(model_variables, nm = model_variables),
function(col){
BinModelVariables(data,
model_variables,
cut_points,
scores)[ ,col]
}
)
## Apply RTS coefficients to variables and sum rows to generate predictions.
## Then, invert.
predictions <- rowSums(mapply('*',
binned_variables,
RTS_coefficients))
return (predictions)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.