data = readxl::read_xlsx(
'~/results_learnmet_benchmarking/results_benchmarking_revisions_paper2.xlsx'
)
data[data$trait %in% c('GY', 'yld_bu_ac'), 'trait'] <- 'GY'
data[data$method %in% c('W-GW-GBLUP'), 'method']<- 'G-W-GW BLUP'
data[data$method == 'xgb_reg_1', 'method'] <- 'XGBoost (xgb_reg_1)'
data[data$method == 'stacking_reg_3', 'method'] <-
'Stacked ensemble (stacked_reg_3)'
colnames(data)[2] <- 'Prediction method'
data$rmse<-as.numeric(data$rmse)
p2 <-
ggplot(data = data[data$dataset %in% c('japonica', 'indica'),], aes(x = IDenv,
y = rmse)) + geom_point(position = position_jitter(width = 0.35, height = 0),size = 3,
aes(colour = `Prediction method`,
shape = dataset)) + theme(
legend.title = element_text(size = 12),
legend.text = element_text(size = 10),
axis.title = element_text(size = 12),
axis.text = element_text(size = 12),
strip.text.x = element_text(size = 10),
axis.text.x = element_text(
angle = 90,
vjust = 0.5,
hjust = 1
)
) + facet_wrap(~ trait,scales="free") + ylab('Root mean square error\n between predicted and\n observed values')
ggsave("~/results_learnmet_benchmarking/rice_plot_rmse.PDF",width=25,height=12,units = 'cm')
p3 <-
ggplot(data = data[data$dataset == 'G2F',], aes(x = IDenv,
y = rmse)) + geom_point(position = position_jitter(width = 0.2, height = 0),size = 3,
aes(colour = `Prediction method`)) + theme(
legend.title = element_text(size = 12),
legend.text = element_text(size = 10),
axis.title = element_text(size = 12),
axis.text = element_text(size = 12),
strip.text.x = element_text(size = 10),
axis.text.x = element_text(
angle = 90,
vjust = 0.5,
hjust = 1
)
) + facet_wrap(~ trait, scales="free") + ylab('Root mean square error\n between predicted and\n observed values')
ggsave("~/results_learnmet_benchmarking/g2f_plot_rmse.PDF",width=25,height=12,units = 'cm')
gridExtra::grid.arrange(p2, p3, nrow = 3)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.