# changeRangeR: An R package for reproducible biodiversity change metrics
# from species distribution estimates.
#
# envChange.R
# File author: Wallace EcoMod Dev Team. 2023.
# --------------------------------------------------------------------------
# This file is part of the changeRangeR R package.
#
# changeRangeR is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License,
# or (at your option) any later version.
#
# changeRangeR is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with changeRangeR. If not, see <http://www.gnu.org/licenses/>.
# --------------------------------------------------------------------------
#
#' @title Calculate change in suitable SDM area through time
#' @description Calculate SDM area after masking for environmental variables through time
#' @param binaryRange raster object or shapefile of binary range (SDM, AOO, EOO) with same projection as rStack
#' @param rStack rasterStack of environmental variable to measure within binary SDM through time
#' @param threshold integer (or integers if bound = "both") of where rStack layers should be thresholded
#' @param bound character string characterizing the way the threshold should happen. "upper" removes values above
#' the threshold (e.g., maximum human footprint)."lower" removes values below the threshold (e.g., minimum forest cover).
#' "neither" does not threshold at any point. "both" thresholds at both threshold values (if provided; e.g.,
#' minimum and maximum temperature).
#' @param correlation boolean. If FALSE, environmental variable will be converted to a binary map and used as a mask.
#' If TRUE, environmental variable is only thresholded by bounds, but left continuous. Then, Pearson's correlation
#' coefficient with SDM will be computed for overlapping areas.
#' @return A list two objects. Area is a data.frame showing the total area of each masked raster. masks is a rasterStack
#' of each masked raster.
#' @examples
#' # create rStack
#' r1 <- raster::raster(nrows=108, ncols=108, xmn=-50, xmx=50)
#' raster::values(r1)<- runif(n = (108*108))
#' r2 <- raster::raster(nrows=108, ncols=108, xmn=-50, xmx=50)
#' raster::values(r2)<- runif(n = (108*108))
#' rStack <- raster::stack(r1,r2)
#' # create binaryRange
#' binaryRange <- raster::crop(r1, raster::extent(c(-50, 50, 0, 90)))
#' binaryRange <- raster::extend(binaryRange, r1)
#' binaryRange[!is.na(binaryRange)] <- 1
#' # set threshold
#' threshold <- 0.5
#' # set bound
#' bound <- "upper"
#' # Run function
#' envChange(rStack = rStack, binaryRange = binaryRange, threshold = threshold, bound = bound)
#' @author pgalante@@amnh.org
#' @export
#SDM <- raster::raster("inst/extdata/DemoData/SDM/olinguitoSDM_coarse.tif")
#binaryRange <- raster::raster("inst/extdata/DemoData/SDM/Climatically_suitable_projected_coarse.tif")
#binaryRange <- raster::projectRaster(binaryRange, SDM, method = "bilinear")
#rStack <- raster::stack(list.files(path = "inst/extdata/DemoData/MODIS", pattern = "\\.tif$", full.names = TRUE))
#rStack <- raster::projectRaster(rStack, SDM, method = 'bilinear')
#threshold <- 50.086735
#test <- envChange(rStack, binaryRange, threshold, bound = "upper")
#test2 <- envChange(rStack, binaryRange, threshold, bound = "lower")
envChange <- function(rStack, binaryRange, threshold, bound, correlation = FALSE){
#require(raster)
# if binaryRange is a shapefile, convert to raster then run like normal
if(!("RasterLayer" %in% class(binaryRange))){
binaryRange <- raster::rasterize(binaryRange, rStack)
}
if(bound == "lower"){
# if(correlation == FALSE){
rStack[rStack < threshold] <- NA
rStack[rStack > threshold] <- 1
# } else {
# rStack[rStack < threshold] <- NA
# }
}
if(bound == "upper"){
# if(correlation = FALSE){
rStack[rStack > threshold] <- NA
rStack[rStack < threshold] <- 1
# } else {
# rStack[rStack > threshold] <- NA
# }
}
if(bound == "neither"){
rStack = rStack
}
if(bound == "both"){
# if(correlation = FALSE){
rStack[rStack < min(threshold)] <- NA
rStack[rStack > max(threshold)] <- NA
rStack[!is.na(rStack)] <- 1
# } else {
# rStack[rStack < min(threshold)] <- NA
# rStack[rStack > max(threshold)] <- NA
# }
}
masks <- lapply(raster::unstack(rStack), function(x) raster::mask(x, binaryRange))
maskStack <- raster::stack(masks)
if (!raster::isLonLat(maskStack)){
areas <- lapply(masks, function(x) raster::res(x)[[1]] * raster::ncell(x[!is.na(x)]))
} else {
area <- lapply(masks, raster::area, na.rm = TRUE)
areas.1 <- lapply(area, function(x) x[!is.na(x)])
areas <- lapply(areas.1, function(x) length(x) * stats::median(x))
#areas <- lapply(masks, raster::area)
}
allAreas <- cbind(unlist(areas))
colnames(allAreas) <- "Area"
rownames(allAreas) <- names(rStack)
return(list(Area = allAreas, masks = maskStack))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.