knitr::opts_chunk$set(echo = TRUE) require(tidyverse) require(viridis) devtools::load_all()
Maximum reproduction rate, $r=0.1$
Mean urine produced per day per individual (in units of 10mL), $U=100$
r latexImg("\\Lambda=\\frac{\\mu_I(\\mu_N+\\sigma)}{\\frac{\\sigma}{I_P}-\\mu_I-\\sigma}")
snail_dat <- data.frame(I_P = seq(0.01,0.15, length.out = 50), Lambda = sapply(seq(0.01,0.15, length.out = 50), I_get_Lambda, mu_N = base_pars["mu_N"], mu_I = base_pars["mu_I"], sigma = base_pars["sigma"])) snail_dat %>% ggplot(aes(x = I_P, y = Lambda)) + geom_line(size = 1.2) + theme_classic() + scale_x_continuous(breaks = c(0.01, 0.05, 0.1, 0.15)) + labs(x = expression(Infected~Snail~Prevalence~(I[P])), y = expression(Snail~FOI~(Lambda)), title = expression(Snail~FOI~as~fx~of~equilibirum~infected~snail~prevalence~I[P]))
r latexImg("N^*(\\Lambda)=K\\Big(1-\\frac{\\mu_N+\\Lambda}{r\\big(1+\\frac{\\Lambda}{\\mu_N+\\sigma}\\big)}\\Big)")
snail_dat2 <- as.data.frame(expand.grid(I_P = seq(0.01,0.15, length.out = 50), K = c(100, 1000, 10000))) %>% mutate(Lambda = map_dbl(I_P, I_get_Lambda, mu_N = base_pars["mu_N"], mu_I = base_pars["mu_I"], sigma = base_pars["sigma"]), N_eq = map2_dbl(Lambda, K, Lambda_get_N_eq, mu_N = base_pars["mu_N"], r = base_pars["r"], sigma = base_pars["sigma"])) snail_dat2 %>% ggplot(aes(x = I_P, y = N_eq, col = as.factor(K))) + geom_line() + scale_y_continuous(trans = "log", breaks = c(10,100,1000,10000), limits = c(10, 10000)) + theme_classic() + labs(x = expression(Infected~Snail~Prevalence~(I[P])), y = expression(Equilibrium~Snail~Population~Size~N[eq]), col = "K", title = expression(Equilibrium~Snail~Population~Size), subtitle = expression(as~fx~of~equilibirum~infected~snail~prevalence~(I[P])~and~carrying~capacity~(K)))
$\Lambda$ and $N^*(\Lambda)$ derived from $I_P$ and $K$, $\mathcal{E}$ and $H$ are observational, $U$ and $v$ are assumed known, and $\omega$ is the main unknown
r latexImg("\\beta=\\frac{\\Lambda N^*(\\Lambda)}{\\mathcal{E}HUv\\omega}=\\Lambda K\\Big(1-\\frac{\\mu_N+\\Lambda}{r\\big(1+\\frac{\\Lambda}{\\mu_N+\\sigma}\\big)}\\Big)")
beta_dat <- as.data.frame(expand.grid(I_P = seq(0.01,0.15, length.out = 15), omega = seq(0.01,0.15, length.out = 15), egg_output = c(3,30,300), H = c(100, 500, 1000))) %>% mutate(Lambda = map_dbl(I_P, I_get_Lambda, mu_N = base_pars["mu_N"], mu_I = base_pars["mu_I"], sigma = base_pars["sigma"]), N_eq = map_dbl(Lambda,Lambda_get_N_eq, K = 1000, mu_N = base_pars["mu_N"], r = base_pars["r"], sigma = base_pars["sigma"])) beta_dat$beta <- apply(beta_dat, 1, function(x){ beta_from_eggs(egg_output = x["egg_output"], H = x["H"], Lambda = x["Lambda"], N_eq = x["N_eq"], U = base_pars["U"], v = base_pars["v"], omega = x["omega"]) }) beta_dat %>% mutate(beta = if_else(beta>1, NA_real_, beta)) %>% ggplot(aes(x = I_P, y = omega)) + geom_tile(aes(fill = beta)) + theme_classic() + facet_grid(egg_output~H, labeller = label_bquote("E"==.(egg_output), "H"==.(H))) + scale_fill_viridis() + labs(x = expression(Infected~Snail~Prevalence~(I[P])), y = expression(Contamination~fraction~(omega)), fill = expression(Snail~infection~probability~(beta)))
r latexImg("\\lambda^*=\\mu_W W^*")
W_dat <- expand.grid(mu_W = c(1/(2*365), 1/(3*365), 1/(4*365), 1/(5*365)), W_star = c(1:100)) %>% mutate(lambda_star = mu_W*W_star) W_dat %>% ggplot(aes(x = W_star, y = lambda_star, col = as.factor(mu_W))) + geom_line(size = 1.2) + theme_classic() + scale_color_discrete(name = "Mean adult worm\nlifespan", labels = c(2:5)) + labs(x = expression(Endemic~Equilibrium~Worm~Burden~(W[eq])), y = expression(Equilibirum~Human~FOI~(lambda[eq])))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.