Maximum reproduction rate, r = 0.1
Mean urine produced per day per individual (in units of 10mL), U = 100
%7D%7B%5Cfrac%7B%5Csigma%7D%7BI_P%7D-%5Cmu_I-%5Csigma%7D)
snail_dat <- data.frame(I_P = seq(0.01,0.15, length.out = 50),
Lambda = sapply(seq(0.01,0.15, length.out = 50), I_get_Lambda,
mu_N = base_pars["mu_N"],
mu_I = base_pars["mu_I"],
sigma = base_pars["sigma"]))
snail_dat %>%
ggplot(aes(x = I_P, y = Lambda)) +
geom_line(size = 1.2) +
theme_classic() +
scale_x_continuous(breaks = c(0.01, 0.05, 0.1, 0.15)) +
labs(x = expression(Infected~Snail~Prevalence~(I[P])),
y = expression(Snail~FOI~(Lambda)),
title = expression(Snail~FOI~as~fx~of~equilibirum~infected~snail~prevalence~I[P]))
%3DK%5CBig(1-%5Cfrac%7B%5Cmu_N+%5CLambda%7D%7Br%5Cbig(1+%5Cfrac%7B%5CLambda%7D%7B%5Cmu_N+%5Csigma%7D%5Cbig)%7D%5CBig))
snail_dat2 <- as.data.frame(expand.grid(I_P = seq(0.01,0.15, length.out = 50),
K = c(100, 1000, 10000))) %>%
mutate(Lambda = map_dbl(I_P, I_get_Lambda,
mu_N = base_pars["mu_N"],
mu_I = base_pars["mu_I"],
sigma = base_pars["sigma"]),
N_eq = map2_dbl(Lambda, K, Lambda_get_N_eq,
mu_N = base_pars["mu_N"],
r = base_pars["r"],
sigma = base_pars["sigma"]))
snail_dat2 %>%
ggplot(aes(x = I_P, y = N_eq, col = as.factor(K))) +
geom_line() +
scale_y_continuous(trans = "log",
breaks = c(10,100,1000,10000),
limits = c(10, 10000)) +
theme_classic() +
labs(x = expression(Infected~Snail~Prevalence~(I[P])),
y = expression(Equilibrium~Snail~Population~Size~N[eq]),
col = "K",
title = expression(Equilibrium~Snail~Population~Size),
subtitle = expression(as~fx~of~equilibirum~infected~snail~prevalence~(I[P])~and~carrying~capacity~(K)))
Λ and N*(Λ) derived from IP and K, ℰ and H are observational, U and v are assumed known, and ω is the main unknown
%7D%7B%5Cmathcal%7BE%7DHUv%5Comega%7D%3D%5CLambda%20K%5CBig(1-%5Cfrac%7B%5Cmu_N+%5CLambda%7D%7Br%5Cbig(1+%5Cfrac%7B%5CLambda%7D%7B%5Cmu_N+%5Csigma%7D%5Cbig)%7D%5CBig))
beta_dat <- as.data.frame(expand.grid(I_P = seq(0.01,0.15, length.out = 15),
omega = seq(0.01,0.15, length.out = 15),
egg_output = c(3,30,300),
H = c(100, 500, 1000))) %>%
mutate(Lambda = map_dbl(I_P, I_get_Lambda,
mu_N = base_pars["mu_N"],
mu_I = base_pars["mu_I"],
sigma = base_pars["sigma"]),
N_eq = map_dbl(Lambda,Lambda_get_N_eq,
K = 1000,
mu_N = base_pars["mu_N"],
r = base_pars["r"],
sigma = base_pars["sigma"]))
beta_dat$beta <- apply(beta_dat, 1, function(x){
beta_from_eggs(egg_output = x["egg_output"],
H = x["H"],
Lambda = x["Lambda"],
N_eq = x["N_eq"],
U = base_pars["U"],
v = base_pars["v"],
omega = x["omega"])
})
beta_dat %>%
mutate(beta = if_else(beta>1, NA_real_, beta)) %>%
ggplot(aes(x = I_P, y = omega)) +
geom_tile(aes(fill = beta)) +
theme_classic() +
facet_grid(egg_output~H, labeller = label_bquote("E"==.(egg_output), "H"==.(H))) +
scale_fill_viridis() +
labs(x = expression(Infected~Snail~Prevalence~(I[P])),
y = expression(Contamination~fraction~(omega)),
fill = expression(Snail~infection~probability~(beta)))
W_dat <- expand.grid(mu_W = c(1/(2*365), 1/(3*365), 1/(4*365), 1/(5*365)),
W_star = c(1:100)) %>%
mutate(lambda_star = mu_W*W_star)
W_dat %>%
ggplot(aes(x = W_star, y = lambda_star, col = as.factor(mu_W))) +
geom_line(size = 1.2) +
theme_classic() +
scale_color_discrete(name = "Mean adult worm\nlifespan",
labels = c(2:5)) +
labs(x = expression(Endemic~Equilibrium~Worm~Burden~(W[eq])),
y = expression(Equilibirum~Human~FOI~(lambda[eq])))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.