knitr::opts_chunk$set(echo = TRUE) require(tidyverse) devtools::load_all() sen_dat <- readRDS("../data/senegal_comms_village_level_summaries.rds") ctrl_vils <- c("DF", "DT", "MB", "MT", "NM", "MG", "NE", "ST") #Communities in control group that only received MDA
sen_dat %>% filter(var %in% c("w", "post")) %>% mutate(date = case_when(var == "w" ~ as.Date(paste0(year, "-03-01")), var == "post" ~ as.Date(paste0(year, "-03-02")) + 1)) %>% ggplot(aes(x = date, y = value, col = school)) + geom_line(size = 1.2) + theme_classic() + labs(x = "Time", y = "Mean worm burden estimate, (W)", title = "Worm burden over two years of MDA")
sen_dat %>% filter(var == "Reff") %>% ggplot(aes(x = school, y = value, fill = year, col = school)) + geom_bar(stat = "identity", position = position_dodge(), width = 0.5, size = 1.2) + theme_classic() + theme(axis.text = element_text(size = 10), axis.title = element_text(size = 14), legend.position = "bottom") + scale_fill_manual(values = c("grey90", "grey10")) + ylim(c(0,10)) + labs(x = "Community", y = expression(italic(R[eff])~estimate), col = "Community")
sen_alphas <- sen_dat %>% filter(var == "lambda" & year == 2017) %>% mutate(alpha = value/(base_pars["omega"]*base_pars["theta"]*10)) comm_reff_profile <- function(comm){ W_base = sen_dat %>% filter(school == comm & year == 2016 & var == "w") %>% pull(value) use_pars <- base_pars use_pars["alpha"] <- sen_alphas %>% filter(school == comm) %>% pull(alpha) fit_beta_Neq <- fit_pars_from_eq_vals(beta_guess = 2e-4, alpha_guess = 2e-4, Neq_guess = 1000, W = W_base, Ip = 0.025, pars = use_pars) use_pars["beta"] <- fit_beta_Neq[1] reff_crv <- data.frame(W = exp_seq(1e-4, 100, 200)) %>% mutate(Reff = sapply(W, Reff_W_kap, kap = 0.05, pars = use_pars)[1,], school = comm) return(reff_crv) } comm_reff_profiles <- bind_rows(lapply(unique(sen_dat$school), comm_reff_profile)) comm_reff_profiles %>% ggplot(aes(x = W, y = Reff, col = school)) + geom_line(size = 1.2) + theme_classic() + scale_x_continuous(trans = "log", breaks = c(1e-4, 1e-2,1,100)) + labs(x = "mean worm burden (W)", y = expression(italic(R[eff]))) comm_reff_profiles %>% ggplot(aes(x = W, y = Reff, col = school)) + geom_line(size = 1.2) + theme_classic() + ylim(c(0,2)) + geom_hline(yintercept = 1, lty = 2) + scale_x_continuous(trans = "log", breaks = c(1e-4, 1e-2,1,100), limits = c(1e-4, 1)) + labs(x = "mean worm burden (W)", y = expression(italic(R[eff])))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.