# Egg burdens and prevalence from V1, tbales 6 and 7 https://doi.org/10.1186/s13071-016-1681-4
C_est_V1 <- convert_burden_egg_to_worm(60, 0.1, 126, 0.71, age_strat_pars["m"], age_strat_pars["zeta"])
A_est_V1 <- convert_burden_egg_to_worm(10, 0.1, 19, 0.33, age_strat_pars["m"], age_strat_pars["zeta"])
V1_pars <- infection_inputs_get_pars(W_A = A_est_V1[1],
kap_A = A_est_V1[2],
H_A = 508,
cvrg_A = 0,
W_C = C_est_V1[1],
kap_C = C_est_V1[2],
H_C = 602,
cvrg_C = 0.8,
I_P = 0.1,
age_strat_pars)
Reff_Wij(V1_pars, C_est_V1[1], C_est_V1[1], A_est_V1[1], A_est_V1[1])
## W_bar Reff Reff_W_TC Reff_W_UC Reff_W_TA Reff_W_UA
## 36.9499070 0.9903141 1.0000000 1.0000000 0.9788360 0.9788360
#Get equilibrium values of state variables
eq_vals_V1 <- c(S=as.numeric(V1_pars["S_eq"]),
E=as.numeric(V1_pars["E_eq"]),
I=as.numeric(V1_pars["I_eq"]),
W_TC=C_est_V1[1], W_UC=C_est_V1[1], W_TA=A_est_V1[1], W_UA=A_est_V1[1])
#time frame of simulation
years <- 20
age_time <- c(1:(365*years))
#create MDA events data frame
eff <- 0.93
sac_mda <- data.frame(var = rep('W_TC', years/2),
time = c(1:(years/2))*365,
value = rep((1 - eff), years/2),
method = rep('mult', years/2))
V1_SAC_mda_sim <- sim_schisto_mod(nstart = eq_vals_V1,
time = age_time,
model = schisto_age_strat_mod,
pars = V1_pars,
events_df = sac_mda) %>%
mutate(mean_W = (W_TC*V1_pars["h_tc"] +
W_UC*V1_pars["h_uc"] +
W_TA*V1_pars["h_ta"] +
W_UA*V1_pars["h_ua"]),
I_prev = I/(S+E+I),
Reff = mapply(Reff_Wij, W_TC, W_UC, W_TA, W_UA, MoreArgs = list(pars = V1_pars))[2,])
## Warning in if (is.na(events_df)) {: the condition has length > 1 and only
## the first element will be used
V1_SAC_mda_sim %>%
gather("Treatment", "Worm Burden", W_TC:mean_W) %>%
ggplot(aes(x = time, y = `Worm Burden`, lty = Treatment)) +
geom_line() +
theme_classic() +
theme(legend.position = c(0.9,0.5)) +
scale_x_continuous(breaks = c(0:years)*365,
labels = c(-1:(years-1))) +
labs(x = "time (years)",
y = expression(Mean~Worm~Burden~(W[ij])),
title = "School-based MDA simulation in high prevalence setting")
V1_SAC_mda_sim %>%
ggplot(aes(x = mean_W, y = Reff)) +
geom_line() +
theme_classic() +
labs(x = "Population mean worm burden",
y = expression(R[eff]),
title = "Mean worm burden and Reff relationship during school-based MDA")
So that makes it look like we're not even close to reaching the breakpoint and maybe haven't even reached Rpeak. Let's increase coverage in SAC and add MDA in adult population and see what plot lokos like
#SAME SETUP ROUTINE
#add transmission and other parameters to parameter set
V1_pars2 <- infection_inputs_get_pars(W_A = A_est_V1[1],
kap_A = A_est_V1[2],
H_A = 508,
cvrg_A = 0.5,
W_C = C_est_V1[1],
kap_C = C_est_V1[2],
H_C = 602,
cvrg_C = 0.9,
I_P = 0.1,
age_strat_pars)
#time frame of simulation
years40 <- 40
age_time40yrs <- c(1:(365*years40))
#create MDA events data frame
eff <- 0.93
com_mda <- data.frame(var = rep(c('W_TC', "W_TA"), years40/2),
time = rep(c(1:(years40/2))*365, each = 2),
value = rep((1 - eff), years40),
method = rep('mult', years40))
#MODEL RUN
V1_CWT_mda_sim <- sim_schisto_mod(nstart = eq_vals_V1,
time = age_time40yrs,
model = schisto_age_strat_mod,
pars = V1_pars2,
events_df = com_mda) %>%
mutate(mean_W = (W_TC*V1_pars2["h_tc"] +
W_UC*V1_pars2["h_uc"] +
W_TA*V1_pars2["h_ta"] +
W_UA*V1_pars2["h_ua"]),
I_prev = I/(S+E+I),
Reff = mapply(Reff_Wij, W_TC, W_UC, W_TA, W_UA, MoreArgs = list(pars = V1_pars2))[2,])
## Warning in if (is.na(events_df)) {: the condition has length > 1 and only
## the first element will be used
V1_CWT_mda_sim %>%
gather("Treatment", "Worm Burden", W_TC:mean_W) %>%
ggplot(aes(x = time, y = `Worm Burden`, lty = Treatment)) +
geom_line() +
theme_classic() +
theme(legend.position = c(0.9,0.5)) +
scale_x_continuous(breaks = c(0:years)*365,
labels = c(-1:(years-1))) +
labs(x = "time (years)",
y = expression(Mean~Worm~Burden~(W[ij])),
title = "Community wide MDA simulation in high prevalence setting")
Let's see if the expanded MDA did anything in terms of reaching the breakpoint
V1_CWT_mda_sim %>%
ggplot(aes(x = mean_W, y = Reff)) +
geom_line() +
theme_classic() +
labs(x = "time (years)",
y = expression(Mean~Worm~Burden~(W[ij])),
title = "Community wide MDA simulation in high prevalence setting")
# Egg burdens and prevalence from V12, tbales 6 and 7 https://doi.org/10.1186/s13071-016-1681-4
C_est_V12 <- convert_burden_egg_to_worm(W_guess = 15,
kap_guess = 0.1,
egg_burden = 46,
prevalence = 0.23,
m = age_strat_pars["m"], zeta = age_strat_pars["zeta"])
A_est_V12 <- convert_burden_egg_to_worm(W_guess = 3,
kap_guess = 0.05,
egg_burden = 6,
prevalence = 0.12,
m = age_strat_pars["m"], zeta = age_strat_pars["zeta"])
V12_pars <- infection_inputs_get_pars(W_A = A_est_V12[1],
kap_A = A_est_V12[2],
H_A = 746,
cvrg_A = 0,
W_C = C_est_V12[1],
kap_C = C_est_V12[2],
H_C = 803,
cvrg_C = 0.8,
I_P = 0.1,
age_strat_pars)
Reff_Wij(V12_pars, C_est_V12[1], C_est_V12[1], A_est_V12[1], A_est_V12[1])
## W_bar Reff Reff_W_TC Reff_W_UC Reff_W_TA Reff_W_UA
## 14.0811719 0.9898074 1.0000000 1.0000000 0.9788360 0.9788360
#Get equilibrium values of state variables
eq_vals_V12 <- c(S=as.numeric(V12_pars["S_eq"]),
E=as.numeric(V12_pars["E_eq"]),
I=as.numeric(V12_pars["I_eq"]),
W_TC=C_est_V12[1], W_UC=C_est_V12[1], W_TA=A_est_V12[1], W_UA=A_est_V12[1])
V12_SAC_mda_sim <- sim_schisto_mod(nstart = eq_vals_V12,
time = age_time,
model = schisto_age_strat_mod,
pars = V12_pars,
events_df = sac_mda) %>%
mutate(mean_W = (W_TC*V12_pars["h_tc"] +
W_UC*V12_pars["h_uc"] +
W_TA*V12_pars["h_ta"] +
W_UA*V12_pars["h_ua"]),
I_prev = I/(S+E+I),
Reff = mapply(Reff_Wij, W_TC, W_UC, W_TA, W_UA, MoreArgs = list(pars = V12_pars))[2,])
## Warning in if (is.na(events_df)) {: the condition has length > 1 and only
## the first element will be used
V12_SAC_mda_sim %>%
gather("Treatment", "Worm Burden", W_TC:mean_W) %>%
ggplot(aes(x = time, y = `Worm Burden`, lty = Treatment)) +
geom_line() +
theme_classic() +
theme(legend.position = c(0.9,0.5)) +
#ylim(c(0,100)) +
scale_x_continuous(breaks = c(0:years)*365,
labels = c(-1:(years-1))) +
labs(x = "time (years)",
y = expression(Mean~Worm~Burden~(W[ij])),
title = "School-based MDA simulation in low prevalence setting")
V12_SAC_mda_sim %>%
ggplot(aes(x = mean_W, y = Reff)) +
geom_line() +
theme_classic() +
labs(x = "Population mean worm burden",
y = expression(R[eff]),
title = "Mean worm burden and Reff relationship during school-based MDA")
#SAME SETUP ROUTINE
#add transmission and other parameters to parameter set
V12_pars2 <- infection_inputs_get_pars(W_A = A_est_V12[1],
kap_A = A_est_V12[2],
H_A = 746,
cvrg_A = 0.5,
W_C = C_est_V12[1],
kap_C = C_est_V12[2],
H_C = 803,
cvrg_C = 0.9,
I_P = 0.1,
age_strat_pars)
#MODEL RUN
V12_CWT_mda_sim <- sim_schisto_mod(nstart = eq_vals_V12,
time = age_time40yrs,
model = schisto_age_strat_mod,
pars = V12_pars2,
events_df = com_mda) %>%
mutate(mean_W = (W_TC*V1_pars2["h_tc"] +
W_UC*V1_pars2["h_uc"] +
W_TA*V1_pars2["h_ta"] +
W_UA*V1_pars2["h_ua"]),
I_prev = I/(S+E+I),
Reff = mapply(Reff_Wij, W_TC, W_UC, W_TA, W_UA, MoreArgs = list(pars = V12_pars2))[2,])
## Warning in if (is.na(events_df)) {: the condition has length > 1 and only
## the first element will be used
V1_CWT_mda_sim %>%
gather("Treatment", "Worm Burden", W_TC:mean_W) %>%
ggplot(aes(x = time, y = `Worm Burden`, lty = Treatment)) +
geom_line() +
theme_classic() +
theme(legend.position = c(0.9,0.5)) +
scale_x_continuous(breaks = c(0:years)*365,
labels = c(-1:(years-1))) +
labs(x = "time (years)",
y = expression(Mean~Worm~Burden~(W[ij])),
title = "Community wide MDA simulation in low prevalence setting")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.