#' Format a labelled data set
#'
#' Format a labelled data set
#'
#' @param lab_data_set rds file to check
#' @import tidyr
#' @import tibble
#' @export
#
labelled_data_format <- function(lab_data_set) {
# Pull out and reformat meta data - date and organisation details
meta_lab <- lab_data_set %>%
filter(group%in%c("date","org"),!is.na(chr)) %>%
select(group,sub_group,row,chr) %>%
tidyr::pivot_wider(id_cols=row,names_from=c(group,sub_group),names_sep="_",values_from=chr)
# Extract data, format, and merge back in the metadata
blank_cols=c(dbl=NA_real_,chr=NA_character_) # to fill in columns if they don't exist - depends on import
formed_data <- lab_data_set %>%
tibble::add_column(!!!blank_cols[setdiff(names(blank_cols),names(.))]) %>%
filter(!group%in%c("date","org"),!is.na(chr) | !is.na(dbl),!is.na(group)) %>%
# mutate(value=gsub("\xa3","",chr) %>% gsub("[^0-9\\.\\-]","",.) %>% as.numeric) %>% # get rid of any non numeric characters (e.g. £ ,)
mutate(value=iconv(chr,"UTF-8","UTF-8",sub="") %>% gsub("[^0-9\\.\\-]","",.) %>% as.numeric) %>% # get rid of any non numeric characters (e.g. £ ,)
mutate(value=ifelse(is.na(value),as.numeric(dbl),value)) %>%
select(row,group,sub_group,measure,value,file) %>%
inner_join(meta_lab) %>% # Drops any rows without metadata
select(-row)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.