| summarize | R Documentation |
Summarizes a data frame by reducing it down to just a few rows using aggregate functions.
First argument: a data frame, which may be grouped (see group_by()]).
Next arguments: an aggregate function applied to a variable. Make sure to give your aggregation a name.
summarize(data, ...)
data %>% summarize(...)
Some aggregate functions: mean(), sd(), median(), quantile(), n()
Other dplyr verbs: filter(), group_by(), arrange(), mutate(), select()
# Summarize the mean and standard
# deviation of each variable:
tibble(
x = c(6, 7, 3),
y = c(5, 9, 0)
) %>%
summarize(
x_mean = mean(x), x_sd = sd(x),
y_mean = mean(y), y_sd = sd(y)
)
#> A tibble: 1 x 4
#> x_mean x_sd y_mean y_sd
<dbl> <dbl> <dbl> <dbl>
#> 5.33 2.08 4.67 4.51
-----------------------------------
# If the data frame has been grouped, summarize
# will return the same number of rows as there are
# groups.
tibble(
x = c(0, 1, 1, 0, 1),
y = c(2, 1, 2, 0, 0)
) %>%
group_by(x) %>%
summarize(
y_mean = mean(y),
y_sum = sum(y),
total_obs = n()
)
#> A tibble: 2 x 4
#> x y_mean y_sum total_obs
<dbl> <dbl> <dbl> <int>
#> 0 1 2 2
#> 1 1 3 3
-----------------------------------
library(gapminder)
gapminder %>%
group_by(continent) %>%
summarize(gdp_mean = mean(gdpPercap))
#> # A tibble: 5 x 2
#> continent gdp_mean
<fct> <dbl>
#> 1 Africa 2194.
#> 2 Americas 7136.
#> 3 Asia 7902.
#> 4 Europe 14469.
#> 5 Oceania 18622.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.