summarize | R Documentation |
Summarizes a data frame by reducing it down to just a few rows using aggregate functions.
First argument: a data frame, which may be grouped (see group_by()
]).
Next arguments: an aggregate function applied to a variable. Make sure to give your aggregation a name.
summarize(data, ...)
data %>% summarize(...)
Some aggregate functions: mean()
, sd()
, median()
, quantile()
, n()
Other dplyr verbs: filter()
, group_by()
, arrange()
, mutate()
, select()
# Summarize the mean and standard # deviation of each variable: tibble( x = c(6, 7, 3), y = c(5, 9, 0) ) %>% summarize( x_mean = mean(x), x_sd = sd(x), y_mean = mean(y), y_sd = sd(y) ) #> A tibble: 1 x 4 #> x_mean x_sd y_mean y_sd <dbl> <dbl> <dbl> <dbl> #> 5.33 2.08 4.67 4.51 ----------------------------------- # If the data frame has been grouped, summarize # will return the same number of rows as there are # groups. tibble( x = c(0, 1, 1, 0, 1), y = c(2, 1, 2, 0, 0) ) %>% group_by(x) %>% summarize( y_mean = mean(y), y_sum = sum(y), total_obs = n() ) #> A tibble: 2 x 4 #> x y_mean y_sum total_obs <dbl> <dbl> <dbl> <int> #> 0 1 2 2 #> 1 1 3 3 ----------------------------------- library(gapminder) gapminder %>% group_by(continent) %>% summarize(gdp_mean = mean(gdpPercap)) #> # A tibble: 5 x 2 #> continent gdp_mean <fct> <dbl> #> 1 Africa 2194. #> 2 Americas 7136. #> 3 Asia 7902. #> 4 Europe 14469. #> 5 Oceania 18622.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.