DcLbm | R Documentation |
An S4 class to represent a degree corrected stochastic block model for co_clustering of bipartite graph. Such model can be used to cluster graph vertex, and model a bipartite graph adjacency matrix X with the following generative model :
π \sim Dirichlet(α)
Z_i^r \sim \mathcal{M}(1,π^r)
Z_j^c \sim \mathcal{M}(1,π^c)
θ_{kl} \sim Exponential(p)
γ_i^r\sim \mathcal{U}(S_k)
γ_i^c\sim \mathcal{U}(S_l)
X_{ij}|Z_{ik}^cZ_{jl}^r=1 \sim \mathcal{P}(γ_i^rθ_{kl}γ_j^c)
The individuals parameters γ_i^r,γ_j^c allow to take into account the node degree heterogeneity.
These parameters have uniform priors over simplex S_k.
These classes mainly store the prior parameters value α,p of this generative model.
The DcLbm-class
must be used when fitting a simple Diagonal Gaussian Mixture Model whereas the DcLbmPrior-class
must be sued when fitting a CombinedModels-class
.
DcLbmPrior(p = NaN) DcLbm(alpha = 1, p = NaN)
p |
Exponential prior parameter (default to Nan, in this case p will be estimated from data as the average intensities of X) |
alpha |
Dirichlet prior parameter over the cluster proportions (default to 1) |
a DcLbmPrior-class
a DcLbm-class
object
DcLbmFit-class
, DcLbmPath-class
Other DlvmModels:
CombinedModels
,
DcSbm
,
DiagGmm
,
DlvmPrior-class
,
Gmm
,
Lca
,
MoM
,
MoR
,
MultSbm
,
Sbm
,
greed()
DcLbmPrior() DcLbmPrior(p = 0.7) DcLbm() DcLbm(p = 0.7)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.